Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Donatiello, Roland

  • Google
  • 1
  • 4
  • 6

University of Kassel

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Investigation of the Influence of Sublayer Thickness on Pairing of Metallic MEMS Shutter Blades6citations

Places of action

Chart of shared publication
Kästner, Philipp
1 / 1 shared
Elsaka, Basma
1 / 1 shared
Hillmer, Hartmut
1 / 3 shared
Käkel, Eireen
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kästner, Philipp
  • Elsaka, Basma
  • Hillmer, Hartmut
  • Käkel, Eireen
OrganizationsLocationPeople

article

Investigation of the Influence of Sublayer Thickness on Pairing of Metallic MEMS Shutter Blades

  • Kästner, Philipp
  • Elsaka, Basma
  • Hillmer, Hartmut
  • Donatiello, Roland
  • Käkel, Eireen
Abstract

<jats:p>For the 3D self-assembly of microstructures, the net intrinsic stress within a hybrid metal layer stack is utilised to study the dynamics of the pairing of metallic MEMS shutter blades with dimensions of 150 × 400 µm2, representing a highly nonlinear Casimir system. The study focuses on two main geometries: (i) unpaired (freestanding) and (ii) paired metallic Micro-Electro-Mechanical Systems (MEMS) shutter blades. The hybrid metal stack comprises three metal layers that are under intrinsic stress, which enables the curling of the freestanding shutter blades. The top aluminum layer thickness is varied systematically, creating tailored stress in the shutter blades, resulting in the freestanding blades curling differently, as well as geometrical changes in the paired shutter blades. Concerning the thickness variations, a large technological processing window has been identified, during which the pairing of the neighbouring shutter blades occurs (the top aluminum layer thickness ranges between 70 and 88 nm). Circles and ellipses have been fitted to micrographs obtained by scanning electron microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). We observed a trend of the reduction of the radius of curvature RoC (ranging between 17 and 79 µm) for the unpaired shutters, and eccentricity (0.36 &lt; ε &lt; 0.67) occurs throughout the system for the paired shutters. Concerning the specific shape of the overlapping region of the two blades of the paired shutters, three pairing scenarios (I, II, and III) have been identified, classified, evaluated, and reported. The overlapping length lo between the paired shutter blades ranges between 31 and 8 µm. These scenarios also reveal nonlinearities in the pairing process.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • scanning electron microscopy
  • aluminium
  • self-assembly
  • confocal laser scanning microscopy