People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gneiger, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Dark field imaging of the in vitro corrosion of biodegradable magnesium screws
- 2024Novel Magnesium Nanocomposite for Wire-Arc Directed Energy Deposition
- 2024Novel Magnesium Nanocomposite for Wire-Arc Directed Energy Deposition
- 2024Investigations on the Forging Behavior of Mg–Ca–Al Alloys
- 2024Manufacturing and processing of sheets using a Mg–Al–Ca–Zn–Y alloy for automotive applicationscitations
- 2023Ultrasonic atomization of magnesium alloy AZ61 based on the TIG melting method
- 2023Applicability of a deformation dilatometer for short time creep experiments of magnesium alloyscitations
- 2023Investigations on forging of low-density Mg-Li alloys
- 2023Precipitation behaviour in AlMgZnCuAg crossover alloy with coarse and ultrafine grainscitations
- 2023Tolerance of Al–Mg–Si Wrought Alloys for High Fe Contents: The Role of Effective Sicitations
- 2023Processing of AZ91D Magnesium Alloy by Laser Powder Bed Fusioncitations
- 2022Investigations on a ternary Mg-Ca-Si wrought alloy extruded at moderate temperaturescitations
- 2022Active inserts, a plug and play solution for increasing mechanical properties and reducing porosity in LPDC-ed parts - Aktive Einsätze, eine Plug-and-Play-Lösung zur Verbesserung der mechanischen Eigenschaften und Verringerung der Porosität in LPDC-gefertigten Teilen
- 2020Mg-alloys for forging applications-A reviewcitations
Places of action
Organizations | Location | People |
---|
article
Processing of AZ91D Magnesium Alloy by Laser Powder Bed Fusion
Abstract
Magnesium alloys are perspective materials for use in transportation, aerospace and medical industries, mainly because of their good load-to-weight ratio, biocompatibility and biodegradability. For the effective production of magnesium components by the laser powder bed fusion (LPBF) process, the process parameters with verified mechanical properties need to be determined. In this paper, we prepared bulk samples with a high relative density of AZ91D magnesium alloy. Tensile tests were then performed on LPBF samples to evaluate the mechanical properties. Our results show that the bulk samples achieved a relative density >99%, in multiple planes over the full sample height, while the mechanical properties reached values of YS = 181 MPa, UTS = 305 MPa and A5.65 = 5.2%. The analysis by scanning electron microscope revealed fine -Mg17Al12 particles in the microstructure, which have a positive effect on the mechanical properties. The chemical composition of magnesium alloy AZ91D changed slightly during processing by LPBF due to the evaporation of the Mg content. However, the resulting composition still corresponds to the range specified by the ASTM standard for the AZ91D alloy.