People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reis, Ana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Low- and High-Pressure Casting Aluminum Alloys: A Reviewcitations
- 2023Upcycling Aluminium Chips to Powder Feedstocks for Powder Metallurgy Applicationscitations
- 2023Additively Manufactured High-Strength Aluminum Alloys: A Reviewcitations
- 2022Damage Evolution Simulations via a Coupled Crystal Plasticity and Cohesive Zone Model for Additively Manufactured Austenitic SS 316L DED Componentscitations
- 2022Tensile Properties of As-Built 18Ni300 Maraging Steel Produced by DEDcitations
- 2022Numerical predictions of orthogonal cutting–induced residual stress of super alloy Inconel 718 considering dynamic recrystallizationcitations
- 2022An Adaptive Thermal Finite Element Simulation of Direct Energy Deposition With Reinforcement Learning: A Conceptual Frameworkcitations
- 2021Fracture Prediction Based on Evaluation of Initial Porosity Induced By Direct Energy Depositioncitations
- 2021Comparison of the machinability of the 316L and 18Ni300 additively manufactured steels based on turning testscitations
- 2021Numerical-experimental plastic-damage characterisation of additively manufactured 18ni300 maraging steel by means of multiaxial double-notched specimenscitations
- 2021Optimization of Direct Laser Deposition of a Martensitic Steel Powder (Metco 42C) on 42CrMo4 Steelcitations
- 2021An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formabilitycitations
- 2021Inconel 625/AISI 413 Stainless Steel Functionally Graded Material Produced by Direct Laser Depositioncitations
- 2021Deposition of Nickel-Based Superalloy Claddings on Low Alloy Structural Steel by Direct Laser Depositioncitations
- 2018Characterizing fracture forming limit and shear fracture forming limit for sheet metalscitations
Places of action
Organizations | Location | People |
---|
article
Tensile Properties of As-Built 18Ni300 Maraging Steel Produced by DED
Abstract
<jats:p>The mechanical behaviour of as-built DED-produced 18Ni300 Maraging steel was studied by manufacturing a wall-like structure from which three different specimen types were obtained: specimens in which the loading direction was the same as the printing direction (vertical), specimens in which these two directions were perpendicular (horizontal), and bimetallic specimens in which the interface between the AISI 1045 substrate and the 18Ni300 steel was tested. The yield strength of the produced samples was 987.9±34.2, 925.9±89.7 and 486.7±47.2MPa for the vertical, horizontal and bimetallic specimens, respectively, while the elongation to failure was 9.4±1.9, 18.3±2.3 and 14.06±0.6% in the same order. The latter specimen failed within the substrate-comprised portion of the specimen. Additionally, the fracture surfaces were analysed through scanning electron microscopy, concluding that while both surfaces consist of dimples, the horizontal specimen presented microporosities with a reduced diameter. A microhardness analysis in the printed wall-like structure following the printing direction yielded an average hardness of 392±21 HV0.3, with fluctuations along the build direction mostly within one standard deviation.</jats:p>