Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lopes, Cm

  • Google
  • 1
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Personalised Esomeprazole and Ondansetron 3D Printing Formulations in Hospital Paediatric Environment: I-Pre-Formulation Studies2citations

Places of action

Chart of shared publication
Catita, Jose
1 / 1 shared
Ferreira, M.
1 / 21 shared
Pinto, Jf
1 / 1 shared
Goncalves, H.
1 / 4 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Catita, Jose
  • Ferreira, M.
  • Pinto, Jf
  • Goncalves, H.
OrganizationsLocationPeople

article

Personalised Esomeprazole and Ondansetron 3D Printing Formulations in Hospital Paediatric Environment: I-Pre-Formulation Studies

  • Catita, Jose
  • Ferreira, M.
  • Pinto, Jf
  • Goncalves, H.
  • Lopes, Cm
Abstract

Individualised medicine demands the formulation of pharmacotherapy in accordance with the characteristics of each patient's health condition, and paediatrics is one of the areas that needs this approach. The 3D printing of oral doses is one method for achieving customised medicine in paediatrics. In this work, pre-formulation studies were conducted to evaluate the viability of using specific raw materials to produce 3D printed dosage forms based on two active pharmaceutical ingredients (APIs), ondansetron and esomeprazole, which are important for therapeutic customisation in paediatrics. Pre-formulation studies were carried out by characterising the physical and chemical properties of selected raw materials, selected APIs and their mixtures, using analytical methods such as scanning electron microscopy (SEM), X-ray powder diffraction (X-RPD), simultaneous thermal analysis (STA) and differential scanning calorimetry (DSC). The flowability of powders, compatibility and stability studies were also performed. Among all the ingredients selected, the PVPs (K17, K25 and K90) had the best characteristics to incorporate both forms of Esomeprazole Mg in a formulation to produce extrudates. The results obtained validated the use of some selected raw materials for tablet manufacture by the 3D printing approach.

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • differential scanning calorimetry