People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bruin, Frederik De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2025Gas-Phase Reactions in Nano-Strand Formation from Al-Fe-Ni Powder Reacted with CaF2-SiO2-Al2O3-MgO-MnO-TiO2 Flux at 1350 °C: SEM Study and Diffusion Calculations
- 2024Timed Thermodynamic Process Model Applied to Submerged Arc Welding Modified by Aluminium-Assisted Metal Powder Alloying
- 2024Nano-Strand Formation via Gas Phase Reactions from Al-Co-Fe Reacted with CaF2-SiO2-Al2O3-MgO Flux at 1350 °C: SEM Study and Thermochemistry Calculationscitations
- 2023A Review of the Thermochemical Behaviour of Fluxes in Submerged Arc Welding: Modelling of Gas Phase Reactionscitations
- 2023Chemical Behaviour of Copper in the Application of Unconstrained Cr-Ni-Al-Cu Metal Powders in Submerged Arc Welding: Gas Phase Thermodynamics and 3D Slag SEM Evidencecitations
- 2022Chemical Interaction of Cr-Al-Cu Metal Powders in Aluminum-Assisted Transfer of Chromium in Submerged Arc Welding of Carbon Steelcitations
- 2022Modification of Flux Oxygen Behaviour via Co-Cr-Al Unconstrained Metal Powder Additions in Submerged Arc Welding: Gas Phase Thermodynamics and 3D Slag SEM Evidencecitations
- 2022In Situ Modification of CaF2-SiO2-Al2O3-MgO Flux Applied in the Aluminium-Assisted Transfer of Titanium in the Submerged Arc Welding of Carbon Steel: Process Mineralogy and Thermochemical Analysiscitations
- 2022Application of Unconstrained Cobalt and Aluminium Metal Powders in the Alloying of Carbon Steel in Submerged Arc Welding: Thermodynamic Analysis of Gas Reactionscitations
- 2022Insight into the Chemical Behaviour of Chromium in CaF2-SiO2-Al2O3-MgO Flux Applied in Aluminium-Assisted Alloying of Carbon Steel in Submerged Arc Weldingcitations
- 2022Aluminium-Assisted Alloying of Carbon Steel in Submerged Arc Welding with Al-Cr-Ni Unconstrained Metal Powders: Thermodynamic Interpretation of Gas Reactionscitations
- 2022Aluminium Assisted Nickel Alloying in Submerged Arc Welding of Carbon Steel: Application of Unconstrained Metal Powderscitations
- 2022Aluminium-Assisted Alloying of Carbon Steel in Submerged Arc Welding: Application of Al-Cr-Ti-Cu Unconstrained Metal Powderscitations
- 2021Application of Copper as Stabiliser in Aluminium Assisted Transfer of Titanium in Submerged Arc Welding of Carbon Steelcitations
- 2021Reactions at the molten flux-weld pool interface in submerged arc weldingcitations
Places of action
Organizations | Location | People |
---|
article
Application of Unconstrained Cobalt and Aluminium Metal Powders in the Alloying of Carbon Steel in Submerged Arc Welding: Thermodynamic Analysis of Gas Reactions
Abstract
<jats:p>The application of cobalt and aluminium powders in unconstrained format, not as metal powder in tubular wire nor as pre-alloyed powder, is used in this work to simplify weld metal alloying. The objective of this study is to demonstrate the application of unconstrained cobalt and aluminium powders in Submerged Arc Welding SAW to alloy the weld metal and to control the weld metal oxygen content. Aluminium powder is used to control the oxygen potential at the weld pool-slag interface in order to prevent oxidation of cobalt. The results presented here show that with the addition of Aluminium powder, 70% yield of Cobalt was achieved from the cobalt powder to the weld metal. The carbon steel base-plate material and weld wire materials combination were alloyed to 5.3% Co and 4.2% Al, whilst controlling the weld metal total oxygen content to 230 ppm. Thermodynamic analysis is applied to investigate the possible chemical interaction reactions between Co and Al compounds, as well as the role of the reactions on Co yield to the weld pool. The application of unconstrained metal powders ensures productivity gains in the overall SAW process because the time consuming and expensive manufacturing of alloyed wire and alloyed powder are eliminated.</jats:p>