Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Arabul, Ege

  • Google
  • 1
  • 1
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022A Novel Low-Cost DIC-Based Residual Stress Measurement Device11citations

Places of action

Chart of shared publication
Lunt, Alexander J. G.
1 / 31 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Lunt, Alexander J. G.
OrganizationsLocationPeople

article

A Novel Low-Cost DIC-Based Residual Stress Measurement Device

  • Arabul, Ege
  • Lunt, Alexander J. G.
Abstract

<p>Residual stress analysis via existing non-destructive or semi-destructive methods can be costly and time-consuming, and therefore a cheaper and faster methodology is sought. This paper proposes a novel measurement device that combines hole drilling and digital image correlation methodology comparable to ASTM E-837-13a. Cross-validation of the methodology was performed on a test specimen using conventional methods and the results were found to be within +/−30 MPa. This device reduces measurement time from 2 h per point to 45 min and the cost of the experiment is reduced from £50 to £1 per measurement. Highlights: Residual stress often has a significant impact on part performance and lifetime. Existing measurement techniques using strain gauges or non-destructive methods are often expensive and time-consuming. This paper presents a low-cost, novel measurement device that uses digital image correlation with the hole-drilling method to quantify the magnitude and preferred orientation of these locked-in forces. A two-axis measurement device that rapidly drills and images the surface around the hole was developed to measure residual stresses as a function of depth with sub-millimetre resolution. Validation of the device and DIC methodology was performed using a four-point bending specimen and comparison with conventional strain gauge methods. The results showed strong correlations between the two measurement techniques, as well as the theoretical estimates. The total cost of production was estimated to be approximately £380, which is significantly cheaper than competitors. The device also substantially reduced the cost per measurement point (less than £1 vs. £50+) and shortened the experiment duration from 2 h per point to 45 min per measurement. A functional, rapid, economical device has been designed and produced, which is currently being used for residual stress analysis of industrial samples. The presented design is completely open-source, and the relevant links are provided.</p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • laser emission spectroscopy