People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Asadnia, Mohsen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Transient piezoresistive strain sensors based on elastic biopolymer thin filmscitations
- 2023Highly stretchable strain sensors based on gold thin film reinforced with carbon nanofiberscitations
- 2023A review on wearable electrospun polymeric piezoelectric sensors and energy harvesterscitations
- 2023Natural clay membranescitations
- 2023Superhydrophobic Al2O3/MMT-PDMS coated fabric for self-cleaning and oil-water separation applicationcitations
- 2022Carbon nanofiber-reinforced Pt thin film-based airflow sensor for respiratory monitoringcitations
- 2022Steering of beam using cylindrical arrangements in a metallic parallel plates structure operating over Ku-bandcitations
- 2022Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and PVA hydrogelcitations
- 2022Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and PVA hydrogelcitations
- 2022Miniaturized wideband antenna prototype operating over the Ku-bandcitations
- 2022Fabrication of tubular ceramic membranes as low-cost adsorbent using natural clay for heavy metals removalcitations
- 2022Highly stable Li+ selective electrode with metal-organic framework as ion-to-electron transducercitations
- 2022Realization of three dimensional printed multi layer wide band prototypecitations
- 2021Polymeric piezoresistive airflow sensor to monitor respiratory patternscitations
- 2021Polymeric piezoresistive airflow sensor to monitor respiratory patterns
- 2021Mechanobiology of dental pulp stem cells at the interface of aqueous-based fabricated ZIF8 thin filmcitations
- 2021Development of Ultrasensitive Biomimetic Auditory Hair Cells Based on Piezoresistive Hydrogel Nanocompositescitations
- 2021Development of ultrasensitive biomimetic auditory hair cells based on piezoresistive hydrogel nanocompositescitations
- 2020Bienzymatic modification of polymeric membranes to mitigate biofoulingcitations
- 20203D printing of inertial microfluidic devicescitations
- 2020Surface modification of polypropylene membrane for the removal of iodine using polydopamine chemistrycitations
- 2019A stripline-based planar wideband feed for high-gain antennas with partially reflecting superstructurecitations
- 2019A Stripline-Based Planar Wideband Feed for High-Gain Antennas with Partially Reflecting Superstructurecitations
- 2018Mass transfer and flow in additive manufacturing of a spherical componentcitations
- 2017Cupula-inspired hyaluronic acid-based hydrogel encapsulation to form biomimetic MEMS flow sensorscitations
- 2016From Biological Cilia to Artificial Flow Sensorscitations
- 2016Superlattice Barrier HgCdTe nBn Infrared Photodetectorscitations
- 2013Modeling of TiC-N Thin Film Coating Process on Drills Using Particle Swarm Optimization Algorithmcitations
- 2011The selection of milling parameters by the PSO-based neural network modeling methodcitations
- 2011Modelling of the thrust force of the drilling operation on PA6-nanoclay nanocomposites using particle swarm optimizationcitations
- 2010Using particle swarm optimization based neural network for modeling of thrust force drilling of PA-6/ Nanoclay Nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Steering of beam using cylindrical arrangements in a metallic parallel plates structure operating over Ku-band
Abstract
<p>A novel flat beam steering prototype based on the specific arrangement of a cylindrical unit cell is designed, manufactured and tested. The wideband and broad scanning capability is demonstrated at the Ku-band. We have considered two configurations, first with circular rings (CR) of the defined permittivity values for respective radial distance from the center of the aperture, second with cylindrical rods that shall be placed on a respective CR, which mimics the defined permittivity. The structure is generated from Vero CMYK full color wax, which utilizes the Multijet 3D printing method. The proposed prototype is designed in the operating frequency of 12 GHz (λ = 25 mm) and separation distance between the two parallel plates are maintained at 12.5 mm (0.5λ) for the TE<sub>10</sub> mode of operation. The diameter of the two parallel plates and the proposed structure is of 100 mm (4λ) where the radius of cylinders varies from 0.5 to 3.5 mm and corresponding relative permittivity varies from 0.6687 to 2.4395. The overall height of the structure is 12.5 mm and is placed between two parallel plates. The minimum separation distance is maintained between the proposed structure and the feed WR-75 waveguide. Irises effect is performed to obtain impedance matching in the operating frequency bands. Beam steering of the radiated waves is observed for relative rotation angles of 0<sup>◦</sup>, 30<sup>◦</sup>, 45<sup>◦</sup>, 75<sup>◦</sup> and 90<sup>◦</sup> of the WR-75 waveguide along the edge of parallel plates. The overall proposed system weighs 179 g, which signifies the light weight characteristics. Moreover, the proposed structure shows low return loss over 10 GHz to 15 GHz operating frequency band.</p>