People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ebel, Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Tuning surface defect states in sputtered titanium oxide electron transport layers for enhanced stability of organic photovoltaicscitations
- 2024Tuning surface defect states in sputtered titanium oxide electron transport layers for enhanced stability of organic photovoltaicscitations
- 2024Tuning Surface Defect States in Sputtered Titanium Oxide Electron Transport Layers for Enhanced Stability of Organic Photovoltaicscitations
- 2024Processability of Mg-Gd Powder via Friction Extrusioncitations
- 2024Improvement of corrosion resistance of PEO coated dissimilar Ti/Mg0.6Ca couplecitations
- 2024Improvement of corrosion resistance of PEO coated dissimilar Ti/Mg0.6Ca couplecitations
- 2024Surfactant-Modified Nanocomposite Thin-Film Capacitors
- 2024Developing Novel Self Healable Capacitor Materials with Improved Thermostability
- 2023Additive manufacturing of materials with embedded electrically conductive paths and their applications
- 2023Additive manufacturing of materials with embedded electrically conductive paths and their applications
- 2023The role of electron extinction in the breakdown strength of nanocomposite capacitors
- 2023The role of electron extinction in the breakdown strength of nanocomposite capacitors
- 2023High-oxygen MIM Ti-6Al-7Nb ::microstructure, tensile and fatigue propertiescitations
- 2023Power Capacitors – state of the art technology review and an outlook into the future
- 2023Nanoscale thinning of metal-coated polypropylene films by Helium-ion irradiation
- 2023Nanoscale thinning of metal-coated polypropylene films by Helium-ion irradiation
- 2022Theory of electrical breakdown in a nanocomposite capacitorcitations
- 2022Theory of electrical breakdown in a nanocomposite capacitorcitations
- 2022Layer-by-layer printable nano-scale polypropylene for precise control of nanocomposite capacitor dielectric morphologies in metallised film capacitorscitations
- 2022Layer-by-layer Printed Dielectrics
- 2022Theoretical investigation of the nanoinclusions shape impact on the capacitance of a nanocomposite capacitorcitations
- 2022Theoretical investigation of the nanoinclusions shape impact on the capacitance of a nanocomposite capacitorcitations
- 2022The effects of oxygen on the fatigue behaviour of MIM Ti-6Al-7Nb alloy
- 2022Fundamental understanding of the influence of oxygen on the fatigue behaviour of To-6Al-7Nb alloys
- 2022How to determine the capacitance of a nanocomposite capacitorcitations
- 2022How to determine the capacitance of a nanocomposite capacitorcitations
- 2022Layer-by-layer Printed Dielectrics:Scalable Nanocomposite Capacitor Fabrication for the Green Transition
- 2021Superior fatigue endurance exempt from high processing cleanliness of Metal-Injection-Molded β Ti-Nb-Zr for bio-tolerant applicationscitations
- 2020Influence of alloying elements in fatigue properties of α/β Titanium alloyscitations
- 2015The effect of zirconium addition on sintering behaviour, microstructure and creep resistance of the powder metallurgy processed alloy Ti–45Al–5Nb–0.2B–0.2Ccitations
- 2001Magnetic properties of rare-earth transition metal aluminides R6T4Al43 with Ho6Mo4Al43-type structurecitations
Places of action
Organizations | Location | People |
---|
article
Theory of electrical breakdown in a nanocomposite capacitor
Abstract
The electrostatic field in a nanocomposite represented by spherical nanoparticles (NPs) embedded into a dielectric between two parallel metallic electrodes is derived from first principles. The NPs are modeled by point dipoles which possess the polarizability of a sphere, and their image potential in the electrodes is found using a dyadic Green’s function. The derived field is used to obtain the parameters which characterize the electrical breakdown in a nanocomposite capacitor. It is found, in particular, that for relatively low volume fractions of NPs, the breakdown voltage linearly decreases with the volume fraction, and the slope of this dependence is explicitly found in terms of the dielectric permittivities of the NPs and the dielectric host. The corresponding decrease in the maximum energy density accumulated in the capacitor is also determined. A comparison with the experimental data on the breakdown strength in polymer films doped with BaTiO3 NPs available in the literature reveals a dominant role of the interface polarization at the NP-polymer interface and an existence of a nonferroelectric surface layer in NPs. This research provides a rigorous approach to the<br/>electrical breakdown phenomenon and can be used for a proper design of nanocomposite capacitors.