People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bober, Mariusz
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Solid-State Rotary Friction-Welded Tungsten and Mild Steel Jointscitations
- 2022Wear Resistance Comparison Research of High-Alloy Protective Coatings for Power Industry Prepared by Means of CMT Claddingcitations
- 2022Selected properties of RAMOR 500 steel welded joints by hybrid PTA-MAGcitations
- 2021Comparative Analysis of the Phase Interaction in Plasma Surfaced NiBSi Overlays with IVB and VIB Transition Metal Carbidescitations
- 2021Persistence of the thin layers of transition metal carbides in contact with liquid NiBSi alloycitations
- 2015The structure of Ni-TiC composite coatings deposited by PPTAW method
- 2010Characterization of Ni-TiC composite coatings deposited by the plasma transfered arc method
Places of action
Organizations | Location | People |
---|
article
Wear Resistance Comparison Research of High-Alloy Protective Coatings for Power Industry Prepared by Means of CMT Cladding
Abstract
In this study, four protective coating materials: Inconel 718, Inconel 625, Alloy 33 and Stellite 6 were deposited on 16Mo3 steel tubes by means of CMT (Cold Metal Transfer), as an advanced version of MAG (Metal Active Gas) welding method. In the next step, the surface of the deposited coating was remelted by means of TIG (Tungsten Inert Gas) welding method. SEM microstructure of coatings–substrate has been reported, and an EDX-researched chemical composition of the coatings was compared to the nominal chemical composition. The hardness distribution in the cross-section was performed, which revealed that among investigated coatings, Stellite 6 layer is the hardest, at about 500 HV0.2. Other materials such as Inconel 625, Inconel 718 and Alloy 33 represented a cladded zone hardness about 250 HV0.2. Stellite 6 layer had the lowest wear resistance in the dry sand/rubber wheel test, and Stellite 6 layer had the highest wear resistance in the erosive blasting test. This proved the existence of different wear mechanisms in the two test methods used. In the dry sand/rubber wheel test, the Alloy 33 and Inconel 718 only represented higher wear resistance than substrate 16Mo3 steel. In abrasive blasting tests all coatings had higher wear resistance than 16Mo3 steel; however, Stellite 6 coatings represented an approximately 5 times higher durability than other investigated (Inconel 625, Inconel 718, and Alloy 33) coatings.