Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fritsch, Daniel

  • Google
  • 5
  • 1
  • 145

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Revisiting the Cu-Zn disorder in kesterite type Cu2ZnSnSe4 employing a novel approach to hybrid functional calculations5citations
  • 2021Structural, Electronic, and Optical Properties of p-Type Semiconductors Cu2O and ZnRh2O4: A Self-Consistent Hybrid Functional Investigation3citations
  • 2018Electronic and optical properties of spinel zinc ferrite: Ab initio hybrid functional calculations37citations
  • 2011Strain effects in spinel ferrite thin films from first principles calculations13citations
  • 2011Effect of epitaxial strain on the cation distribution in spinel ferrites CoFe(2)O(4) and NiFe(2)O(4): A density functional theory study87citations

Places of action

Chart of shared publication
Ederer, Claude
2 / 3 shared
Chart of publication period
2022
2021
2018
2011

Co-Authors (by relevance)

  • Ederer, Claude
OrganizationsLocationPeople

article

Revisiting the Cu-Zn disorder in kesterite type Cu2ZnSnSe4 employing a novel approach to hybrid functional calculations

  • Fritsch, Daniel
Abstract

In recent years, the search for more efficient and environmentally friendly materials to be employed in the next generation of thin film solar cell devices has seen a shift towards hybrid halide perovskites and chalcogenide materials crystallising in the kesterite crystal structure. Prime examples for the latter are Cu2ZnSnS4, Cu2ZnSnSe4, and their solid solution Cu2ZnSn(SxSe1-x)(4), where actual devices already demonstrated power conversion efficiencies of about 13 %. However, in their naturally occurring kesterite crystal structure, the so-called Cu-Zn disorder plays an important role and impacts the structural, electronic, and optical properties. To understand the influence of Cu-Zn disorder, we perform first-principles calculations based on density functional theory combined with special quasirandom structures to accurately model the cation disorder. Since the electronic band gaps and derived optical properties are severely underestimated by (semi)local exchange and correlation functionals, supplementary hybrid functional calculations have been performed. Concerning the latter, we additionally employ a recently devised technique to speed up structural relaxations for hybrid functional calculations. Our calculations show that the Cu-Zn disorder leads to a slight increase in the unit cell volume compared to the conventional kesterite structure showing full cation order, and that the band gap gets reduced by about 0.2 eV, which is in very good agreement with earlier experimental and theoretical findings. Our detailed results on structural, electronic, and optical properties will be discussed with respect to available experimental data, and will provide further insights into the atomistic origin of the disorder-induced band gap lowering in these promising kesterite type materials.

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • theory
  • thin film
  • density functional theory