People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Macleod, Charles N.
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (45/45 displayed)
- 20243-Dimensional residual neural architecture search for ultrasonic defect detectioncitations
- 2023Single-bit coded excitation for lightweight phase coherence imaging
- 2023Flexible and automated robotic multi-pass arc welding
- 2023Application of eddy currents for inspection of carbon fibre composites
- 2023Application of machine learning techniques for defect detection, localisation, and sizing in ultrasonic testing of carbon fibre reinforced polymers
- 2023In-process non-destructive evaluation of metal additive manufactured components at build using ultrasound and eddy-current approachescitations
- 2023In-process non-destructive evaluation of metal additive manufactured components at build using ultrasound and eddy-current approachescitations
- 2023Mapping SEARCH capabilities to Spirit AeroSystems NDE and automation demand for composites
- 2023Using neural architecture search to discover a convolutional neural network to detect defects From volumetric ultrasonic testing data of composites
- 2023Fibre volume fraction screening of pultruded carbon fibre reinforced polymer panels based on analysis of anisotropic ultrasonic sound velocitycitations
- 2023Phased array inspection of narrow-gap weld LOSWF defects for in-process weld inspection
- 2023Driving towards flexible and automated robotic multi-pass arc welding
- 2022Transfer learning for classification of experimental ultrasonic non-destructive testing images from synthetic data
- 2022Autonomous and targeted eddy current inspection from UT feature guided wave screening of resistance seam welds
- 2022Mechanical stress measurement using phased array ultrasonic system
- 2022Towards ultrasound-driven, in-process monitoring & control of GTA welding of multi-pass welds for defect detection & prevention
- 2022Automated bounding box annotation for NDT ultrasound defect detection
- 2022Multi-sensor electromagnetic inspection feasibility for aerospace composites surface defects
- 2022Collaborative robotic wire + arc additive manufacture and sensor-enabled in-process ultrasonic non-destructive evaluationcitations
- 2022Investigating ultrasound wave propagation through the coupling medium and non-flat surface of wire + arc additive manufactured components inspected by a PAUT roller-probe
- 2022Towards real-time ultrasound driven inspection and control of GTA welding processes for high-value manufacturing
- 2022Deep learning based inversion of locally anisotropic weld properties from ultrasonic array datacitations
- 2022Dual-tandem phased array inspection for imaging near-vertical defects in narrow gap welds
- 2022Targeted eddy current inspection based on ultrasonic feature guided wave screening of resistance seam welds
- 2022In-process non-destructive evaluation of wire + arc additive manufacture components using ultrasound high-temperature dry-coupled roller-probe
- 2022Collaborative robotic Wire + Arc Additive Manufacture and sensor-enabled in-process ultrasonic Non-Destructive Evaluationcitations
- 2022Automated real time eddy current array inspection of nuclear assetscitations
- 2021Feed forward control of welding process parameters through on-line ultrasonic thickness measurementcitations
- 2021Inspection of components with obscured accessibility
- 2021A cost-function driven adaptive welding framework for multi-pass robotic weldingcitations
- 2021Non-contact in-process ultrasonic screening of thin fusion welded jointscitations
- 2021Miniaturised SH EMATs for fast robotic screening of wall thinning in steel platescitations
- 2020In-process calibration of a non-destructive testing system used for in-process inspection of multi-pass weldingcitations
- 2020Quantifying impacts on remote photogrammetric inspection using unmanned aerial vehiclescitations
- 2020Laser-assisted surface adaptive ultrasound (SAUL) inspection of samples with complex surface profiles using a phased array roller-probe
- 2019Ultrasonic phased array inspection of wire + arc additive manufacture samples using conventional and total focusing method imaging approachescitations
- 2019Electromagnetic acoustic transducers for guided-wave based robotic inspection
- 2019Ultrasonic phased array inspection of wire plus arc additive manufacture samples using conventional and total focusing method imaging approachescitations
- 2019Ultrasonic phased array inspection of a Wire + Arc Additive Manufactured (WAAM) sample with intentionally embedded defectscitations
- 2019Towards guided wave robotic NDT inspection
- 2018Machining-based coverage path planning for automated structural inspectioncitations
- 2018Ultrasonic phased array inspection of wire plus arc additive manufacture (WAAM) samples using conventional and total focusing method (TFM) imaging approaches
- 2018Enhancing the sound absorption of small-scale 3D printed acoustic metamaterials based on Helmholtz resonatorscitations
- 2016Conformable eddy current array deliverycitations
- 2014Automatic ultrasonic robotic arraycitations
Places of action
Organizations | Location | People |
---|
article
Deep learning based inversion of locally anisotropic weld properties from ultrasonic array data
Abstract
The ability to reliably detect and characterise defects embedded in austenitic steel welds depends on prior knowledge of microstructural descriptors, such as the orientations of the weld’s locally anisotropic grain structure. These orientations are usually unknown but it has been shown recently that they can be estimated from ultrasonic scattered wave data. However, conventional algorithms used for solving this inverse problem incur a significant computational cost. In this paper, we propose a framework which uses deep neural networks (DNNs) to reconstruct crystallographic orientations in a welded material from ultrasonic travel time data, in real-time. Acquiring the large amount of training data required for DNNs experimentally is practically infeasible for this problem, therefore a model based training approach is investigated instead, where a simple and efficient analytical method for modelling ultrasonic wave travel times through given weld geometries is implemented. The proposed method is validated by testing the trained networks on data arising from sophisticated finite element simulations of wave propagation through weld microstructures. The trained deep neural network predicts grain orientations to within 3° and in near real-time (0.04 s), presenting a significant step towards realising real-time, accurate characterisation of weld microstructures from ultrasonic non-destructive measurements. The subsequent improvement in defect imaging is then demonstrated via use of the DNN predicted crystallographic orientations to correct the delay laws on which the total focusing method imaging algorithm is based. An improvement of up to 5.3 dB in the signal-to-noise ratio is achieved.