People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bakandritsos, Aristides
Technical University of Ostrava
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Unveiling the potential of covalent organic frameworks for energy storage: Developments, challenges, and future prospectscitations
- 2022Microwave Synthesis, Characterization and Perspectives of Wood Pencil-Derived Carboncitations
- 2022Probing the effect of a glass network on the synthesis and luminescence properties of composite perovskite glasses [Invited]citations
- 2021Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitorscitations
- 2021The Hallmarks of Copper Single Atom Catalysts in Direct Alcohol Fuel Cells and Electrochemical CO<sub>2</sub> Fixationcitations
- 2021Single Co‐Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reactioncitations
- 2021The Hallmarks of Copper Single Atom Catalysts in Direct Alcohol Fuel Cells and Electrochemical CO2 Fixationcitations
- 2020Multi-Leg TiO2 Nanotube Photoelectrodes Modified by Platinized Cyanographene with Enhanced Photoelectrochemical Performancecitations
- 2012Merging high doxorubicin loading with pronounced magnetic response and bio-repellent properties in hybrid drug nanocarrierscitations
Places of action
Organizations | Location | People |
---|
article
Microwave Synthesis, Characterization and Perspectives of Wood Pencil-Derived Carbon
Abstract
<jats:p>More than 14 billion pencils are manufactured and used globally every year. On average, a pencil is discarded after 60% of its original length has been depleted. In the present work we propose a simple and affordable way of converting this non-neglectable amount of waste into added value carbon product. In particular, we demonstrate the microwave synthesis of carbon from the wood pencil with and without chemical activation. This could be a process stage before the final recycling of the expensive graphite core. In the latter case, irradiation of the wood pencil in a domestic microwave oven heats up the pencil’s graphite core, thus inducing carbonization of its wood casing. The carbonized product consists of amorphous carbon nanosheets having relatively low surface area. However, if the wood pencil is soaked in 50% KOH aqueous solution prior to microwave irradiation, a significantly higher surface area of carbon is obtained, consisting of irregular-shaped porous particles. Consequently, the obtained carbon can easily decolorize a methylene blue aqueous solution, can be used to make pocket warmers or gunpowder, and lastly, serves as an excellent adsorbent towards Cr(VI) removal from water, showing a maximum adsorption capacity of 70–75 mg/g within 24 h at 23 °C, pH = 3.</jats:p>