Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tantis, Iosif

  • Google
  • 1
  • 10
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Microwave Synthesis, Characterization and Perspectives of Wood Pencil-Derived Carbon5citations

Places of action

Chart of shared publication
Salmas, Constantinos
1 / 2 shared
Bakandritsos, Aristides
1 / 9 shared
Baikousi, Maria
1 / 3 shared
Chalmpes, Nikolaos
1 / 2 shared
Gournis, Dimitrios
1 / 21 shared
Bourlinos, Athanasios B.
1 / 1 shared
Moschovas, Dimitrios
1 / 9 shared
Avgeropoulos, Apostolos
1 / 17 shared
Asimakopoulos, Georgios
1 / 3 shared
Karakassides, Michael A.
1 / 6 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Salmas, Constantinos
  • Bakandritsos, Aristides
  • Baikousi, Maria
  • Chalmpes, Nikolaos
  • Gournis, Dimitrios
  • Bourlinos, Athanasios B.
  • Moschovas, Dimitrios
  • Avgeropoulos, Apostolos
  • Asimakopoulos, Georgios
  • Karakassides, Michael A.
OrganizationsLocationPeople

article

Microwave Synthesis, Characterization and Perspectives of Wood Pencil-Derived Carbon

  • Salmas, Constantinos
  • Bakandritsos, Aristides
  • Baikousi, Maria
  • Chalmpes, Nikolaos
  • Gournis, Dimitrios
  • Bourlinos, Athanasios B.
  • Moschovas, Dimitrios
  • Avgeropoulos, Apostolos
  • Tantis, Iosif
  • Asimakopoulos, Georgios
  • Karakassides, Michael A.
Abstract

<jats:p>More than 14 billion pencils are manufactured and used globally every year. On average, a pencil is discarded after 60% of its original length has been depleted. In the present work we propose a simple and affordable way of converting this non-neglectable amount of waste into added value carbon product. In particular, we demonstrate the microwave synthesis of carbon from the wood pencil with and without chemical activation. This could be a process stage before the final recycling of the expensive graphite core. In the latter case, irradiation of the wood pencil in a domestic microwave oven heats up the pencil’s graphite core, thus inducing carbonization of its wood casing. The carbonized product consists of amorphous carbon nanosheets having relatively low surface area. However, if the wood pencil is soaked in 50% KOH aqueous solution prior to microwave irradiation, a significantly higher surface area of carbon is obtained, consisting of irregular-shaped porous particles. Consequently, the obtained carbon can easily decolorize a methylene blue aqueous solution, can be used to make pocket warmers or gunpowder, and lastly, serves as an excellent adsorbent towards Cr(VI) removal from water, showing a maximum adsorption capacity of 70–75 mg/g within 24 h at 23 °C, pH = 3.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • surface
  • amorphous
  • Carbon
  • activation
  • wood