Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kenfoud, Hamza

  • Google
  • 2
  • 5
  • 109

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Structural and electrochemical characterizations of Bi12CoO20 sillenite crystals: degradation and reduction of organic and inorganic pollutants49citations
  • 2021Synthesis and Characterization of ZnBi2O4 Nanoparticles: Photocatalytic Performance for Antibiotic Removal under Different Light Sources60citations

Places of action

Chart of shared publication
Nasrallah, Noureddine
1 / 5 shared
Trari, Mohamed
1 / 6 shared
Assadi, Aymen Amin
1 / 4 shared
Bagtache, Radia
1 / 2 shared
Baaloudj, Oussama
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Nasrallah, Noureddine
  • Trari, Mohamed
  • Assadi, Aymen Amin
  • Bagtache, Radia
  • Baaloudj, Oussama
OrganizationsLocationPeople

article

Synthesis and Characterization of ZnBi2O4 Nanoparticles: Photocatalytic Performance for Antibiotic Removal under Different Light Sources

  • Kenfoud, Hamza
Abstract

<jats:p>This work aims to synthesize a photocatalyst with high photocatalytic performances and explore the possibility of using it for antibiotic removal from wastewater. For that, the spinel ZnBi2O4 (ZBO) was produced with the co-precipitation method and its optical, dielectric, and electrochemical characteristics were studied. The phase has been determined and characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). For the ZBO morphology, a Scanning Electron Microscopy (SEM) has been used. Then, the optical and dielectric properties of ZBO have been evaluated by calculating refractive index n (λ), extinction coefficient (k), dissipation factor (tan δ), relaxation time (τ), and optical conductivity (σopt) using the spectral distribution of T(λ) and R(λ). An optical gap band of 2.8 eV was determined and confirmed. The electrochemical performance of ZBO was investigated and an n-type semiconductor with a flat band potential of 0.54 V_SCE was found. The photocatalytic efficiency of ZBO was investigated in order to degrade the antibiotic Cefixime (CFX) under different light source irradiations to exploit the optical properties. A high CFX degradation of approximately 89% was obtained under solar light (98 mW cm−2) only after 30 min, while 88% of CFX degradation efficiency has been reached after 2 h under UV irradiation (20 mW cm−2); this is in line with the finding of the optical characterizations. According to the obtained data, solar light assisted nanoparticle ZBO can be used successfully in wastewater to remove pharmaceutical products.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • precipitation
  • Fourier transform infrared spectroscopy
  • n-type semiconductor
  • dissipation factor