People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Paiva, Maria C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Application of sound waves during the curing of an acrylic resin and its composites based on short carbon fibers and carbon nanofibers
- 2024Multi-scale experimental investigation on the structural behaviour of novel nanocomposite/natural textile-reinforced mortarscitations
- 2024High-performance PEEK/MWCNT nanocomposites: Combining enhanced electrical conductivity and nanotube dispersioncitations
- 2024Shape-memory polymers based on carbon nanotube composites
- 2023Fabrication of low electrical percolation threshold multi-walled carbon nanotube sensors using magnetic patterningcitations
- 2023Graphene/polyurethane nanocomposite coatings – Enhancing the mechanical properties and environmental resistance of natural fibers for masonry retrofittingcitations
- 2022Hybrid structures for Achilles' tendon repaircitations
- 2022The potential of beeswax colloidal emulsion/films for hydrophobization of natural fibers prior to NTRM manufacturingcitations
- 20213D printing of graphene-based polymeric nanocomposites for biomedical applicationscitations
- 2021Development of electrically conductive polymer nanocomposites for the automotive cable industrycitations
- 2021Poly(lactic acid)/graphite nanoplatelet nanocomposite filaments for ligament scaffoldscitations
- 2021Rheologically assisted design of conductive adhesives for stencil printing on PCBcitations
- 2021Insight into the Effects of Solvent Treatment of Natural Fibers Prior to Structural Composite Casting: Chemical, Physical and Mechanical Evaluationcitations
- 2021Polylactic acid/carbon nanoparticle composite filaments for sensingcitations
- 2020Mixed Carbon Nanomaterial/Epoxy Resin for Electrically Conductive Adhesivescitations
- 2018Effects of particle size and surface chemistry on the dispersion of graphite nanoplates in polypropylene compositescitations
- 2018Electrically conductive polyetheretherketone nanocomposite filaments: from production to fused deposition modelingcitations
- 2017Green synthesis of novel biocomposites from treated cellulosic fibers and recycled bio-plastic polylactic acid
- 2017Biomedical films of graphene nanoribbons and nanoflakes with natural polymerscitations
- 2016Chitosan nanocomposites based on distinct inorganic fillers for biomedical applicationscitations
Places of action
Organizations | Location | People |
---|
article
Polylactic acid/carbon nanoparticle composite filaments for sensing
Abstract
Polylactic acid (PLA) is a bio-based, biodegradable polymer that presents high potential for biomedical and sensing applications. Ongoing works reported in the literature concern mainly applications based on 3D printing, while textile applications are hindered by the limited flexibility of PLA and its composite filaments. In the present work, PLA/multiwall carbon nanotube (MWCNT) composite filaments were produced with enhanced flexibility and electrical conductivity, which may be applied on a textile structure. A biodegradable plasticizer was incorporated in the nanocomposites, aiming at improving MWCNT dispersion and increasing the flexibility of the filaments. Filaments were produced with a range of compositions and their morphology was characterized as well as their thermal, thermomechanical, and electrical properties. Selected compositions were tested for sensing activity using saturated acetone vapor, demonstrating a suitable response and potential for the application in fabrics with sensing capacity. ; publishedVersion