People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zegan, Georgeta
Grigore T. Popa University of Medicine and Pharmacy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Mechanical Properties and Wear Resistance of Biodegradable ZnMgY Alloycitations
- 2024Corrosion Behavior and Mechanical Properties of Zn–Ti Alloys as Biodegradable Materialscitations
- 2023Analysis of Degradation Products of Biodegradable ZnMgY Alloycitations
- 2023Microstructure, Shape Memory Effect, Chemical Composition and Corrosion Resistance Performance of Biodegradable FeMnSi-Al Alloycitations
- 2023Influence of Dynamic Strain Sweep on the Degradation Behavior of FeMnSi–Ag Shape Memory Alloyscitations
- 2022In-Vitro Analysis of FeMn-Si Smart Biodegradable Alloycitations
- 2020Surface Analysis of 3D (SLM) Co–Cr–W Dental Metallic Materialscitations
- 2018Electrochemical Behavior of Biodegradable FeMnSi–MgCa Alloycitations
Places of action
Organizations | Location | People |
---|
article
Surface Analysis of 3D (SLM) Co–Cr–W Dental Metallic Materials
Abstract
<jats:p>The surface condition of the materials involved in dentistry is significant for the subsequent operations that are applied in oral cavity. Samples of Co–Cr–W alloy, obtained through selective laser melting (SLM) 3D printing, with different surface states were analyzed. Surface analysis after the 3D printing process and sandblasting was realized from microstructural, chemical composition, profilometry, droplet adhesion, scratch test, and microhardness perspectives. The results presented a hardening process and a roughness modification following the sandblasting procedure, a better adhesion of the liquid droplets, the appearance of micro-cracks during the scratch test, and the oxidation of the sample after the 3D printing process and surface processing.</jats:p>