Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lukichev, Dmitry

  • Google
  • 1
  • 5
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Hysteresis measurements and numerical losses segregation of additively manufactured silicon steel for 3D printing electrical machines41citations

Places of action

Chart of shared publication
Rassõlkin, Anton
1 / 7 shared
Tiismus, Hans
1 / 9 shared
Vaimann, Toomas
1 / 10 shared
Kallaste, Ants
1 / 11 shared
Belahcen, Anouar
1 / 26 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Rassõlkin, Anton
  • Tiismus, Hans
  • Vaimann, Toomas
  • Kallaste, Ants
  • Belahcen, Anouar
OrganizationsLocationPeople

article

Hysteresis measurements and numerical losses segregation of additively manufactured silicon steel for 3D printing electrical machines

  • Rassõlkin, Anton
  • Tiismus, Hans
  • Vaimann, Toomas
  • Kallaste, Ants
  • Belahcen, Anouar
  • Lukichev, Dmitry
Abstract

<p>Samples from FeSi4 powder were fabricated with a low power selective laser melting (SLM) system using a laser re-melting strategy. The sample material was characterized through magnetic measurements. The study showed excellent DC magnetic properties, comparable to commercial and other 3D printed soft ferromagnetic materials from the literature at low (1 T) magnetization. Empirical total core losses were segregated into hysteresis, eddy and excessive losses via the subtraction of finite element method (FEM) simulated eddy current losses and hysteresis losses measured at quasi-static conditions. Hysteresis losses were found to decrease from 3.65 to 0.95 W/kg (1 T, 50 Hz) after the annealing. Both empirical and FEM results confirm considerable eddy currents generated in the printed bulk toroidal sample, which increase dramatically at high material saturation after annealing. These losses could potentially be reduced by using partitioned material internal structure realized by printed airgaps. Similarly, with regard to the samples characterized in this study, the substantially increased core losses induced by material oversaturation due to reduced filling factor may present a challenge in realizing 3D printed electrical machines with comparable performance to established 2D laminated designs.</p>

Topics
  • steel
  • selective laser melting
  • Silicon
  • annealing
  • magnetization