People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Poelman, Gaétan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Automated woven background removal for enhanced infrared thermographic inspection of fabric composites
- 2022Broadband nonlinear elastic wave modulation spectroscopy for damage detection in compositescitations
- 2022Phase inversion in (vibro-)thermal wave imaging of materials: Extracting the AC component and filtering nonlinearitycitations
- 2021Phase inversion for accurate extraction of the harmonic thermal response in active infrared thermographic NDT
- 2021Broadband nonlinear elastic wave modulation spectroscopy for damage detection in composites
- 2021On the application of an optimized frequency-phase modulated waveform for enhanced infrared thermal wave radar imaging of compositescitations
- 2021Vibro-Thermal Wave Radar: Application of Barker Coded Amplitude Modulation for Enhanced Low-Power Vibrothermographic Inspection of Compositescitations
- 2020An experimental study on the defect detectability of time- and frequency-domain analyses for flash thermographycitations
- 2020Adaptive spectral band integration in flash thermography : enhanced defect detectability and quantification in compositescitations
- 2020A robust multi-scale gapped smoothing algorithm for baseline-free damage mapping from raw thermal images in flash thermography
- 2020Multi-scale gapped smoothing algorithm for robust baseline-free damage detection in optical infrared thermographycitations
- 2020Nonlinear Elastic Wave Energy Imaging for the Detection and Localization of In-Sight and Out-of-Sight Defects in Compositescitations
- 2020Probing the limits of full-field linear local defect resonance identification for deep defect detectioncitations
- 2020Vibrothermographic spectroscopy with thermal latency compensation for effective identification of local defect resonance frequencies of a CFRP with BVIDcitations
- 2019In-plane local defect resonances for efficient vibrothermography of impacted carbon fiber reinforced plastics (CFRP)citations
- 2019Performance of frequency and/or phase modulated excitation waveforms for optical infrared thermography of CFRPs through thermal wave radar : a simulation studycitations
- 2019Efficient automated extraction of local defect resonance parameters in fiber reinforced polymers using data compression and iterative amplitude thresholdingcitations
- 2019Sweep vibrothermography and thermal response derivative spectroscopy for identification of local defect resonance frequencies of impacted CFRPcitations
- 2018Optical infrared thermography of CFRP with artificial defects : performance of various post-processing techniquescitations
- 2018Automated extraction of local defect resonance for efficient non-destructive testing of composites
Places of action
Organizations | Location | People |
---|
article
Nonlinear Elastic Wave Energy Imaging for the Detection and Localization of In-Sight and Out-of-Sight Defects in Composites
Abstract
In this study, both linear and nonlinear vibrational defect imaging is performed for a cross-ply carbon fiber-reinforced polymer (CFRP) plate with artificial delaminations and for a quasi-isotropic CFRP with delaminations at the edge. The measured broadband chirp vibrational response is decomposed into different components: the linear response and the nonlinear response in terms of the higher harmonics. This decomposition is performed using the short-time Fourier transformation combined with bandpass filtering in the time-frequency domain. The linear and nonlinear vibrational response of the defect is analyzed by calculation of the defect-to-background ratio. Damage maps are created using band power calculation, which does not require any user-input nor prior information about the inspected sample. It is shown that the damage map resulting from the linear band power shows high sensitivity to shallow defects, while the damage map associated to the nonlinear band power shows a high sensitivity to both shallow and deep defects. Finally, a baseline-free framework is proposed for the detection and localization of out-of-sight damage. The damage is localized by source localization of the observed nonlinear wave components in the wavenumber domain.