Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

De Baere, David

  • Google
  • 5
  • 8
  • 58

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Numerical investigation into laser-based powder bed fusion of cantilevers produced in 300-grade maraging steel20citations
  • 2020Numerical investigation into the effect of different parameters on the geometrical precision in the laser-based powder bed fusion process Chain8citations
  • 2020Microstructural modelling of above β-transus heat treatment of additively manufactured Ti-6Al-4V using cellular automata7citations
  • 2018Modelling of the microstructural evolution of Ti6Al4V parts produced by selective laser melting during heat treatmentcitations
  • 2018Thermo-fluid-metallurgical modelling of the selective laser melting process chain23citations

Places of action

Chart of shared publication
Hattel, Jh
5 / 160 shared
Smolej, Lukasz
1 / 3 shared
Moshiri, Mandaná
1 / 8 shared
Mohanty, Sankhya
4 / 31 shared
Tosello, Guido
1 / 101 shared
Moshiri, Mandanà
1 / 2 shared
Valente, Emilie Hørdum
1 / 18 shared
Bayat, Mohamad
1 / 23 shared
Chart of publication period
2022
2020
2018

Co-Authors (by relevance)

  • Hattel, Jh
  • Smolej, Lukasz
  • Moshiri, Mandaná
  • Mohanty, Sankhya
  • Tosello, Guido
  • Moshiri, Mandanà
  • Valente, Emilie Hørdum
  • Bayat, Mohamad
OrganizationsLocationPeople

article

Numerical investigation into the effect of different parameters on the geometrical precision in the laser-based powder bed fusion process Chain

  • Hattel, Jh
  • Mohanty, Sankhya
  • Tosello, Guido
  • Moshiri, Mandanà
  • De Baere, David
Abstract

<p>Due to the layer-by-layer nature of the process, parts produced by laser-based powder bed fusion (LPBF) have high residual stresses, causing excessive deformations. To avoid this, parts are often post-processed by subjecting them to specially designed heat treatment cycles before or after their removal from the base plate. In order to investigate the effects of the choice of post-processing steps, in this work the entire LPBF process chain is modelled in a commercial software package. The developed model illustrates the possibilities of implementing and tailoring the process chain model for metal additive manufacturing using a general purpose finite element (FE) solver. The provided simplified computational example presents an idealised model to analyse the validity of implementing the LPBF process chain in FE software. The model is used to evaluate the effect of the order of the process chain, the heat treatment temperature and the duration of the heat treatment. The results show that the model is capable of qualitatively capturing the effect of the stress relaxation that occurs during a heat treatment at elevated temperature. Due to its implementation, the model is relatively insensitive to duration and heat treatment temperature, at least as long as it is above the relaxation temperature. Furthermore, the simulations suggest that, when post-processing, it is necessary to perform the stress relaxation before the part is removed from the base plate, in order to avoid a significant increase of the deformation. The paper demonstrates the capability of the simulation tool to evaluate the effects of variations in the process chain steps and highlights its potential usage in directing decision-making for LPBF process chain design.</p>

Topics
  • impedance spectroscopy
  • simulation
  • selective laser melting