People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kim, Joon Heon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Plasma Enhanced Wet Chemical Surface Activation of TiO2 for the Synthesis of High Performance Photocatalytic Au/TiO2 Nanocomposites
Abstract
To enhance the effectiveness of TiO2 as a photocatalyst, it was believed that the drawbacks of the large bandgap and the rapid electron-hole recombination can be overcome by coupling TiO2 with plasmonic metal nanoparticles. The incorporation of the nanoparticles onto the TiO2 surface requires a suitable procedure to achieve the proper particle adhesion. In this work, we propose a simple, clean, and effective surface activation of TiO2 using plasma enhanced wet chemical surface treatment. Under only 5 min of plasma treatment in a 3% NH3/3% H2O2 solution, gold nanoparticles were found better adhered onto the TiO2 surface. Hence, the methylene blue degradation rate of the Au/TiO2 under sunlight treated was improved by a factor of 3.25 times in comparison to non-treated Au/TiO2 and by 13 times in comparison to the bare rutile TiO2.