Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Eleftheriadou, Neda Malesic

  • Google
  • 1
  • 3
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Development of Novel Polymer Supported Nanocomposite GO/TiO2 Films, Based on poly(L-lactic acid) for Photocatalytic Applications27citations

Places of action

Chart of shared publication
Lambropoulou, Dimitra
1 / 3 shared
Papageorgiou, Myrsini
1 / 1 shared
Ofrydopoulou, Anna
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Lambropoulou, Dimitra
  • Papageorgiou, Myrsini
  • Ofrydopoulou, Anna
OrganizationsLocationPeople

article

Development of Novel Polymer Supported Nanocomposite GO/TiO2 Films, Based on poly(L-lactic acid) for Photocatalytic Applications

  • Lambropoulou, Dimitra
  • Papageorgiou, Myrsini
  • Ofrydopoulou, Anna
  • Eleftheriadou, Neda Malesic
Abstract

<jats:p>In the present study the development of novel polymer-supported nanocomposite graphene oxide (GO)–TiO2 films, based on poly(L-lactic acid), one of the most exploited bioplastics worldwide, was explored for photocatalytic applications. The nanocomposites were synthesized and evaluated as photocatalysts for the removal of a mixture of nine antibiotics, consisting of two sulphonamides (sulfamethoxazole, sulfadiazine), three fluoroquinolones (levofloxacin, norfloxacin, moxifloxacin), one anti-TB agent (isoniazid), one nitroimidazole (metronidazole), one lincosamide (lincomycin) and one diaminopyrimidine (trimethoprim), which are commonly found in wastewaters. The films were synthesized using 1 wt% GO and different TiO2 content (10, 25, and 50 wt%) and characterized using Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Findings confirmed the successful immobilization of GO/TiO2 in all cases. The PLLA–GO–TiO2 50 wt% composite film demonstrated higher photocatalytic efficiency and, thus, was further investigated demonstrating excellent photostability and reusability even after four cycles. Overall, PLLA–GO–TiO2 50 wt% nanocomposite demonstrated high efficiency in the photocatalytic degradation of the antibiotics in various matrices including pure water and wastewater.</jats:p>

Topics
  • nanocomposite
  • polymer
  • thermogravimetry
  • differential scanning calorimetry
  • Fourier transform infrared spectroscopy
  • wide-angle X-ray diffraction