Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rodríguez, Sebastián

  • Google
  • 1
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020An Analytical–Experimental Approach to Quantifying the Effects of Static Magnetic Fields for Cell Culture Applications10citations

Places of action

Chart of shared publication
Ferrada, Pablo
1 / 4 shared
Maureira, Alejandro
1 / 1 shared
Zapata, Manuel
1 / 1 shared
Serrano, Génesis
1 / 1 shared
Miranda-Ostojic, Carol
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Ferrada, Pablo
  • Maureira, Alejandro
  • Zapata, Manuel
  • Serrano, Génesis
  • Miranda-Ostojic, Carol
OrganizationsLocationPeople

article

An Analytical–Experimental Approach to Quantifying the Effects of Static Magnetic Fields for Cell Culture Applications

  • Rodríguez, Sebastián
  • Ferrada, Pablo
  • Maureira, Alejandro
  • Zapata, Manuel
  • Serrano, Génesis
  • Miranda-Ostojic, Carol
Abstract

<jats:p>This work aimed to study the effects of static magnetic fields (SMFs) on cell cultures. A glass flask was filled with a liquid medium, which was surrounded by permanent magnets. Air was introduced through a tube to inject bubbles. Two magnet configurations, north and south, were used as perturbation. Scenedesmus obliquus and Nannochloropsis gaditana, growing in Medium 1 and 2, were subjected to the bubbly flow and SMFs. Differences between media were mainly due to conductivity (0.09 S/m for Medium 1 and 4.3 S/m for Medium 2). Joule dissipation (P) increased with the magnetic flux density (B 0), being 4 orders of magnitude higher in Medium 2 than in 1. Conversely, the time constant (τ P) depended onB 0, being nearly constant for Medium 1 and decreasing at 449 s/T for Medium 2. Dissipation occurred with the sameτ P(235 s) in Medium 1 and 2 atB 0= 0.5T. In Species 1, the SMF effect was inhibitory. For Species 2, a higher enzymatic activity was observed. For superoxide dismutase, the relative difference was 78% with the north and 115% with the south configuration compared to the control values. For the catalase, differences of 29% with the north and 23% with the south configuration compared to control condition were obtained.</jats:p>

Topics
  • density
  • glass
  • glass