Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Friswell, Michael

  • Google
  • 2
  • 8
  • 6

Swansea University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024High Aspect Ratio Composite Wings: Geometrically Nonlinear Aeroelasticity, Multi-Disciplinary Design Optimization, Manufacturing, and Experimental Testing6citations
  • 2016Static fracture and modal analysis simulation of a gas turbine compressor blade and bladed disk systemcitations

Places of action

Chart of shared publication
Farsadi, Touraj
1 / 3 shared
Kayran, Altan
1 / 2 shared
Khodaparast, Hamed Haddad
1 / 2 shared
Tehrani, Majid Ahmadi
1 / 1 shared
Fernandes, Ralston
1 / 1 shared
El-Borgi, Sami
1 / 1 shared
Ahmed, Khaled
1 / 3 shared
Jamia, Nidhal
1 / 1 shared
Chart of publication period
2024
2016

Co-Authors (by relevance)

  • Farsadi, Touraj
  • Kayran, Altan
  • Khodaparast, Hamed Haddad
  • Tehrani, Majid Ahmadi
  • Fernandes, Ralston
  • El-Borgi, Sami
  • Ahmed, Khaled
  • Jamia, Nidhal
OrganizationsLocationPeople

article

High Aspect Ratio Composite Wings: Geometrically Nonlinear Aeroelasticity, Multi-Disciplinary Design Optimization, Manufacturing, and Experimental Testing

  • Farsadi, Touraj
  • Kayran, Altan
  • Khodaparast, Hamed Haddad
  • Tehrani, Majid Ahmadi
  • Friswell, Michael
Abstract

<jats:p>In the field of aerospace engineering, the design and manufacturing of high aspect ratio composite wings has become a focal point of innovation and efficiency. These long, slender wings, constructed with advanced materials such as carbon fiber and employing efficient manufacturing methods such as vacuum bagging, hold the promise of significantly lighter aircraft, reduced fuel consumption, and enhanced overall performance. However, to fully realize these benefits, it is imperative to address a multitude of structural and aeroelastic constraints. This research presents a novel aeroelastically tailored Multi-objective, Multi-disciplinary Design Optimization (MMDO) approach that seamlessly integrates numerical optimization techniques to minimize weight and ensure structural integrity. The optimized wing configuration is then manufactured, and a Ground Vibration Test (GVT) and static deflection analysis using the Digital Image Correlation (DIC) system are used to validate and correlate with the numerical model. Within the fully automated in-house Nonlinear Aeroelastic Simulation Software (NAS2) package (version v1.0), the integration of analytical tools offers a robust numerical approach for enhancing aeroelastic and structural performance in the design of composite wings. Nonlinear aeroelastic analyses and tailoring are included, and a population-based stochastic optimization is used to determine the optimum design within NAS2. These analytical tools contribute to a comprehensive and efficient methodology for designing composite wings with improved aeroelastic and structural characteristics. This comprehensive methodology aims to produce composite wings that not only meet rigorous safety and performance standards but also drive cost-efficiency in the aerospace industry. Through this multidisciplinary approach, the authors seek to underscore the pivotal role of tailoring aeroelastic solutions in the advanced design and manufacturing of high aspect ratio composite wings, thereby contributing to the continued evolution of aerospace technology.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • simulation
  • composite