People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sarkar, Aritra
QuTech
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
QiBAM
Abstract
With small-scale quantum processors transitioning from experimental physics labs to industrial products, these processors in a few years are expected to scale up and be more robust for efficiently computing important algorithms in various fields. In this paper, we propose a quantum algorithm to address the challenging field of data processing for genome sequence reconstruction. This research describes an architecture-aware implementation of a quantum algorithm for sub-sequence alignment. A new algorithm named QiBAM (quantum indexed bidirectional associative memory) is proposed, which uses approximate pattern-matching based on Hamming distances. QiBAM extends the Grover’s search algorithm in two ways, allowing: (1) approximate matches needed for read errors in genomics, and (2) a distributed search for multiple solutions over the quantum encoding of DNA sequences. This approach gives a quadratic speedup over the classical algorithm. A full implementation of the algorithm is provided and verified using the OpenQL compiler and QX Simulator framework. Our implementation represents a first exploration towards a full-stack quantum accelerated genome sequencing pipeline design.