Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wu, Z.

  • Google
  • 14
  • 86
  • 398

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2023Elastic properties of the non-mixing copper donor assisted material in friction stir welding of aluminum alloys using nanoindentation1citations
  • 2023Microstructural statistics for low-cycle fatigue crack initiation in α+β titanium alloys: A microstructure based RVE assessment7citations
  • 2021Degradation of Antibiotics in Wastewater: New Advances in Cavitational Treatments57citations
  • 2020Direct Growth of Vertically Aligned Carbon Nanotubes onto Transparent Conductive Oxide Glass for Enhanced Charge Extraction in Perovskite Solar Cells16citations
  • 2019The contact angle of nanofluids as thermophysical property57citations
  • 2019The contact angle of nanofluids as thermophysical property57citations
  • 2019The contact angle of nanofluids as thermophysical property57citations
  • 2018Optimal postbuckling design of variable angle tow composite plates32citations
  • 2018Optimization of Postbuckling Behaviour of Variable Thickness Composite Panels with Variable Angle Tows73citations
  • 2018Damage identification in a tubular composite/metal joint through chronology-based robust clustering of acoustic emissionscitations
  • 2013Optimization of variable angle tow plates with one free edge using lamination parameterscitations
  • 2013A 2D equivalent single-layer formulation for the effect of transverse shear on laminated plates with curvilinear fibres30citations
  • 2012Buckling analysis of Variable Angle Tow composite plates using Differential Quadrature Methodcitations
  • 2002Luminescence characterisation of defects in pld alumina and copper implanted silica11citations

Places of action

Chart of shared publication
Mohammed, Y. S.
1 / 1 shared
Bhukya, S. N.
1 / 1 shared
Al-Allaq, A. H.
1 / 1 shared
Elmustafa, A. A.
1 / 2 shared
Stinville, J. C.
1 / 14 shared
Hémery, Samuel
1 / 7 shared
Bean, C.
1 / 2 shared
Naït-Ali, A.
1 / 3 shared
Sun, F.
1 / 22 shared
Prima, F.
1 / 26 shared
Cravotto, G.
1 / 3 shared
Liu, P.
1 / 7 shared
Calcio Gaudino, E.
1 / 1 shared
Canova, E.
1 / 1 shared
Webb, T.
1 / 2 shared
Shao, G.
1 / 4 shared
Shen, Y.
1 / 9 shared
Silva, S. R. P.
1 / 16 shared
Sajjad, Muhammad Tariq
1 / 18 shared
Anguita, J. V.
1 / 2 shared
Ferguson, V.
1 / 1 shared
Zhang, W.
1 / 58 shared
Li, B.
1 / 14 shared
Thomson, S. A. J.
1 / 1 shared
Tas, M. O.
1 / 1 shared
Huminic, Angel
1 / 1 shared
Huminic, Gabriela
1 / 1 shared
Garmendia, N.
3 / 6 shared
Hernandez, Leonor
1 / 4 shared
Mondragon, Rosa
1 / 2 shared
Martinez Cuenca, Raul
1 / 1 shared
Barison, Simona
1 / 3 shared
Estellé, Patrice
1 / 15 shared
Hernaiz, M.
3 / 3 shared
Turgut, A.
3 / 3 shared
Kujawska, A.
3 / 3 shared
Kalus, M.-R.
1 / 1 shared
Mancin, Simone
1 / 5 shared
Schroth, K.-G.
1 / 1 shared
Doretti, L.
3 / 3 shared
Sundén, B.
3 / 3 shared
Çobanoğlu, Nur
1 / 1 shared
Lasheras-Zubiate, L.
1 / 1 shared
Buschmann, Matthias
1 / 1 shared
Alonso, V.
3 / 3 shared
Amigo, A.
3 / 3 shared
Karadeniz, Ziya Haktan
1 / 1 shared
Huminic, G.
2 / 2 shared
Çobanoğlu, N.
2 / 2 shared
Kalus, M. R.
1 / 1 shared
Karadeniz, Z. H.
1 / 1 shared
Schroth, K. G.
1 / 1 shared
Huminic, A.
2 / 2 shared
Lasheras-Zubiate, M.
2 / 3 shared
Estellé, P.
2 / 4 shared
Martínez-Cuenca, R.
2 / 2 shared
Mondragón, R.
2 / 2 shared
Buschmann, M. H.
1 / 1 shared
Barison, S.
2 / 8 shared
Mancin, S.
2 / 3 shared
Hernández López, L.
2 / 2 shared
Schroth, G.
1 / 1 shared
Kalus, M.
1 / 1 shared
Karadeniz, Z.
1 / 1 shared
Buschmann, M.
1 / 1 shared
Weaver, Pm
5 / 560 shared
Raju, G.
5 / 7 shared
White, S.
2 / 4 shared
Raju, Gangadharan
1 / 18 shared
Wu, Zhangming
1 / 21 shared
Ramasso, E.
1 / 3 shared
Chandarana, N.
1 / 7 shared
Gresil, M.
1 / 22 shared
Soutis, Costas
1 / 356 shared
Bernard, J.
1 / 7 shared
Pethick, J.
1 / 1 shared
Chatzi, P.
1 / 1 shared
Groh, R. M. J.
1 / 4 shared
Hole, D. E.
1 / 11 shared
Köster, Sarah
1 / 6 shared
Gonzalo, Jose
1 / 3 shared
Kurt, Kasim
1 / 1 shared
Brooks, R.
1 / 2 shared
Suarez-Garcia, A.
1 / 2 shared
Türkler, A.
1 / 1 shared
Townsend, Peter D.
1 / 1 shared
Chart of publication period
2023
2021
2020
2019
2018
2013
2012
2002

Co-Authors (by relevance)

  • Mohammed, Y. S.
  • Bhukya, S. N.
  • Al-Allaq, A. H.
  • Elmustafa, A. A.
  • Stinville, J. C.
  • Hémery, Samuel
  • Bean, C.
  • Naït-Ali, A.
  • Sun, F.
  • Prima, F.
  • Cravotto, G.
  • Liu, P.
  • Calcio Gaudino, E.
  • Canova, E.
  • Webb, T.
  • Shao, G.
  • Shen, Y.
  • Silva, S. R. P.
  • Sajjad, Muhammad Tariq
  • Anguita, J. V.
  • Ferguson, V.
  • Zhang, W.
  • Li, B.
  • Thomson, S. A. J.
  • Tas, M. O.
  • Huminic, Angel
  • Huminic, Gabriela
  • Garmendia, N.
  • Hernandez, Leonor
  • Mondragon, Rosa
  • Martinez Cuenca, Raul
  • Barison, Simona
  • Estellé, Patrice
  • Hernaiz, M.
  • Turgut, A.
  • Kujawska, A.
  • Kalus, M.-R.
  • Mancin, Simone
  • Schroth, K.-G.
  • Doretti, L.
  • Sundén, B.
  • Çobanoğlu, Nur
  • Lasheras-Zubiate, L.
  • Buschmann, Matthias
  • Alonso, V.
  • Amigo, A.
  • Karadeniz, Ziya Haktan
  • Huminic, G.
  • Çobanoğlu, N.
  • Kalus, M. R.
  • Karadeniz, Z. H.
  • Schroth, K. G.
  • Huminic, A.
  • Lasheras-Zubiate, M.
  • Estellé, P.
  • Martínez-Cuenca, R.
  • Mondragón, R.
  • Buschmann, M. H.
  • Barison, S.
  • Mancin, S.
  • Hernández López, L.
  • Schroth, G.
  • Kalus, M.
  • Karadeniz, Z.
  • Buschmann, M.
  • Weaver, Pm
  • Raju, G.
  • White, S.
  • Raju, Gangadharan
  • Wu, Zhangming
  • Ramasso, E.
  • Chandarana, N.
  • Gresil, M.
  • Soutis, Costas
  • Bernard, J.
  • Pethick, J.
  • Chatzi, P.
  • Groh, R. M. J.
  • Hole, D. E.
  • Köster, Sarah
  • Gonzalo, Jose
  • Kurt, Kasim
  • Brooks, R.
  • Suarez-Garcia, A.
  • Türkler, A.
  • Townsend, Peter D.
OrganizationsLocationPeople

article

Elastic properties of the non-mixing copper donor assisted material in friction stir welding of aluminum alloys using nanoindentation

  • Mohammed, Y. S.
  • Bhukya, S. N.
  • Al-Allaq, A. H.
  • Wu, Z.
  • Elmustafa, A. A.
Abstract

<jats:p>Friction stir welding of high-strength materials such as steels is the impeded by the lack of the vast heat input needed to start the process. Contact friction is considered the most dominant source of heat generation for FSW steels which tends to cause severe wear conditions of the tool hear. To relieve the extreme wear conditions that occur on the tool heads because of FSW steels, we introduce the non-mixing Cu donor stir material to friction stir welding of aluminum alloys. The elastic properties of the Cu donor assisted friction stir welded aluminum alloys are measured using nanoindentation. The hardness and elastic modulus were measured for two regions, the base metal (BM) and the stir zone (SZ). The measurements were conducted for 20% and 60% Cu non-heat treated (NHT) and heat-treated (HT) samples. The nanomechanical properties were measured using nanoindentation with the continuous stiffness method (CSM) in depth control. The HT samples are softer than the NHT samples as expected. However, the 20% Cu NHT and HT samples depicted the same hardness at the SZ. Similar results were observed for the 60% Cu donor stir samples. It therefore concluded that the SZ is softer than the BM for the 20% and 60% Cu donor stir material as expected. The hardness of the weld at the SZ is similar to the hardness of the Al6061-T6 plate, suggesting that the Cu donor stir material did not impact the hardness properties of the Al6061-T6 plate due to the depletion of the Cu donor stir material during the welding process, an important result of the concept of the donor material. The elastic moduli of the Cu donor stir welded samples vary between <jats:bold>75~85 <jats:italic>GPa</jats:italic></jats:bold> at a depth of indentation of <jats:bold>~4600 <jats:italic>nm</jats:italic></jats:bold>, which are different from the elastic moduli of Cu 110 (<jats:bold>117.2 <jats:italic>GPa</jats:italic></jats:bold>) and similar to the elastic modulus of aluminum alloys (<jats:bold>68.9 <jats:italic>GPa</jats:italic></jats:bold>), an important outcome.</jats:p>

Topics
  • impedance spectroscopy
  • aluminium
  • strength
  • steel
  • hardness
  • nanoindentation
  • copper