Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bell, David

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Exposure assessment during paint spraying and drying using PTR-ToF-MScitations

Places of action

Chart of shared publication
Marcolli, Claudia
1 / 2 shared
Peter, Thomas
1 / 3 shared
Schmid, Kaspar
1 / 1 shared
Gasic, Bojan
1 / 1 shared
Sabic, Srdjan
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Marcolli, Claudia
  • Peter, Thomas
  • Schmid, Kaspar
  • Gasic, Bojan
  • Sabic, Srdjan
OrganizationsLocationPeople

article

Exposure assessment during paint spraying and drying using PTR-ToF-MS

  • Marcolli, Claudia
  • Peter, Thomas
  • Schmid, Kaspar
  • Gasic, Bojan
  • Bell, David
  • Sabic, Srdjan
Abstract

<jats:p>Spraying is a common way to distribute occupational products, but it puts worker's health at risk by exposing them to potentially harmful particles and gases. The objective of this study is to use time-resolved measurements to gain an understanding of spray applications at the process level and to compare them to predictions of exposure models. We used proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) at 1-s time resolution to monitor the gas phase concentration of the solvents acetone, ethanol, butyl acetate, xylene and 1-methoxy-2-propy acetate during outdoor spraying and indoor drying of metal plate under various conditions of outdoor air supply. We found that during spraying, gas-phase exposure was dominated by the more volatile solvents acetone and ethanol, which exhibited strong concentration variations due to the outdoor winds. During drying, exposure strongly depended on the strength of ventilation. Under conditions with high supply of outdoor air, our measurements show a near-exponential decay of the solvent concentrations during drying. Conversely, under conditions without outdoor air supply, the drying process required hours, during which the less volatile solvents passed through a concentration maximum in the gas phase, so that the exposure during drying exceeded the exposure during spraying. The concentrations measured during spraying were then compared for each of the substances individually with the predictions of the exposure models ECETOC TRA, Stoffenmanager, and ART using TREXMO. For these conditions, ECETOC TRA and Stoffenmanager predicted exposures in the measured concentration range, albeit not conservative for all solvents and each application. In contrast, ART largely overestimated the exposure for the more volatile solvents acetone and ethanol and slightly underestimated exposure to 1M2PA for one spraying. ECETOC TRA and ART do not have options to predict exposure during drying. Stoffenmanager has the option to predict drying together with spraying, but not to predict the drying phase independently. Our study demonstrates the importance of considering both the spray cloud and solvent evaporation during the drying process. To improve workplace safety, there is a critical need for enhanced exposure models and comprehensive datasets for calibration and validation covering a broader range of exposure situations.</jats:p>

Topics
  • impedance spectroscopy
  • laser emission spectroscopy
  • strength
  • gas phase
  • spectrometry
  • drying
  • solvent evaporation
  • time-of-flight mass spectrometry