Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mańkowski, Dariusz R.

  • Google
  • 1
  • 6
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Glutathione and copper ions as critical factors of green plant regeneration efficiency of triticale in vitro anther culture7citations

Places of action

Chart of shared publication
Bednarek, Piotr T.
1 / 1 shared
Orłowska, Renata
1 / 1 shared
Nowak, Michał
1 / 4 shared
Kowalczyk, Krzysztof
1 / 3 shared
Zimny, Janusz
1 / 1 shared
Zebrowski, Jacek
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Bednarek, Piotr T.
  • Orłowska, Renata
  • Nowak, Michał
  • Kowalczyk, Krzysztof
  • Zimny, Janusz
  • Zebrowski, Jacek
OrganizationsLocationPeople

article

Glutathione and copper ions as critical factors of green plant regeneration efficiency of triticale in vitro anther culture

  • Bednarek, Piotr T.
  • Mańkowski, Dariusz R.
  • Orłowska, Renata
  • Nowak, Michał
  • Kowalczyk, Krzysztof
  • Zimny, Janusz
  • Zebrowski, Jacek
Abstract

<jats:p>Plant tissue culture techniques are handy tools for obtaining unique plant materials that are difficult to propagate or important for agriculture. Homozygous materials derived through <jats:italic>in vitro</jats:italic> cultures are invaluable and significantly accelerate the evaluation of new varieties, e.g., cereals. The induction of somatic embryogenesis/androgenesis and the regeneration and its efficiency can be influenced by the external conditions of tissue culture, such as the ingredients present in the induction or regeneration media. We have developed an approach based on biological system, molecular markers, Fourier Transform Infrared spectroscopy, and structural equation modeling technique to establish links between changes in sequence and DNA methylation at specific symmetric (CG, CHG) and asymmetric (CHH) sequences, glutathione, and green plant regeneration efficiency in the presence of variable supplementation of induction medium with copper ions. The methylation-sensitive Amplified Fragment Length Polymorphism was used to assess tissue culture-induced variation, Fourier Transform Infrared spectroscopy to describe the glutathione spectrum, and a structural equation model to develop the relationship between sequence variation<jats:italic>, de novo</jats:italic> DNA methylation within asymmetric sequence contexts, and copper ions in the induction medium, as well as, glutathione, and green plant efficiency. An essential aspect of the study is demonstrating the contribution of glutathione to green plant regeneration efficiency and indicating the critical role of copper ions in influencing tissue culture-induced variation, glutathione, and obtaining green regenerants. The model presented here also has practical implications, showing that manipulating the concentration of copper ions in the induction medium may influence cell function and increases green plant regeneration efficiency.</jats:p>

Topics
  • impedance spectroscopy
  • copper
  • Fourier transform infrared spectroscopy