Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kellmann, Michael

  • Google
  • 1
  • 4
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Verbal Encouragement and Between-Day Reliability During High-Intensity Functional Strength and Endurance Performance Testing26citations

Places of action

Chart of shared publication
Faude, Oliver
1 / 2 shared
Donath, Lars
1 / 5 shared
Engel, Florian A.
1 / 1 shared
Kölling, Sarah
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Faude, Oliver
  • Donath, Lars
  • Engel, Florian A.
  • Kölling, Sarah
OrganizationsLocationPeople

article

Verbal Encouragement and Between-Day Reliability During High-Intensity Functional Strength and Endurance Performance Testing

  • Faude, Oliver
  • Donath, Lars
  • Engel, Florian A.
  • Kellmann, Michael
  • Kölling, Sarah
Abstract

As verbal encouragement (VE) is used in high intensity functional exercise testing, this randomized controlled crossover study aimed at investigating whether VE affects high intensity functional strength and endurance performance testing. We further examined between-day variability of high intensity functional strength and endurance performance testing with and without VE. Nineteen experienced athletes (seven females and 12 males, age: 23.7 ± 4.3 years) performed a standardized one repetition maximum (1 RM) squat test and a 12-min high-intensity functional training (HIFT) workout [as many repetitions as possible (AMRAP)] on four different days over a 2-week period. Athletes randomly performed each test twice, either with VE or without (CON), with a minimum of 72 h rest between tests. Very good to excellent relative between-day reliability with slightly better values for strength testing (ICC: 0.99; CV: 3.5–4.1%) compared to endurance testing (ICC 0.87–0.95; CV: 3.9–7.3%) were observed. Interestingly, VE led to higher reliability during endurance testing. Mean squat strength depicted higher strength values with VE (107 ± 33 kg) compared to CON (105 ± 33 kg; p = 0.009, Cohen’s d: 0.06). AMRAP in the endurance test showed negligible differences between VE (182 ± 33 AMRAP) and CON (181 ± 35 AMRAP; p = 0.71, Cohen’s d: 0.03). In conclusion, the effects of VE do not notably exceed day-to-day variability during high intensity functional strength (CV: 3.5–4.1%) and endurance (CV: 3.9–7.3%) testing. However, high intensity functional strength and endurance testing with VE seems to be slightly more reliable, particularly during endurance testing.

Topics
  • impedance spectroscopy
  • strength