Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cebrián, S.

  • Google
  • 2
  • 37
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Background discrimination with a Micromegas detector prototype and veto system for BabyIAXO2citations
  • 2022Improving ANAIS-112 sensitivity to DAMA/LIBRA signal with machine learning techniques9citations

Places of action

Chart of shared publication
Solórzano, A. Ortiz De
2 / 3 shared
García, E.
1 / 1 shared
Cintas, D.
1 / 1 shared
Amaré, J.
1 / 1 shared
Ortigoza, Y.
1 / 1 shared
Oliván, M. A.
1 / 1 shared
Apilluelo, J.
1 / 1 shared
Martínez, M.
1 / 6 shared
Pardo, T.
1 / 2 shared
Coarasa, I.
1 / 1 shared
Salinas, A.
1 / 2 shared
Puimedón, J.
1 / 1 shared
Sarsa, M. L.
1 / 1 shared
Villar, P.
1 / 1 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Solórzano, A. Ortiz De
  • García, E.
  • Cintas, D.
  • Amaré, J.
  • Ortigoza, Y.
  • Oliván, M. A.
  • Apilluelo, J.
  • Martínez, M.
  • Pardo, T.
  • Coarasa, I.
  • Salinas, A.
  • Puimedón, J.
  • Sarsa, M. L.
  • Villar, P.
OrganizationsLocationPeople

article

Background discrimination with a Micromegas detector prototype and veto system for BabyIAXO

  • Giganon, A.
  • Altenmüller, K.
  • Obis, L.
  • Ruz, J.
  • Galindo, J.
  • Margalejo, C.
  • Irastorza, I. G.
  • Luzón, G.
  • Díez-Ibañez, D.
  • Pérez, O.
  • Cebrián, S.
  • Goblin, C.
  • Papaevangelou, T.
  • Mirallas, H.
  • Galan, J.
  • Ezquerro, A.
  • Navick, X. F.
  • Castel, J. F.
  • Vogel, J. K.
  • Loiseau, C.
  • Dafni, T.
  • Solórzano, A. Ortiz De
  • Quintana, A.
  • García, J. A.
  • Ferrer-Ribas, E.
Abstract

<jats:p>In this paper we present measurements performed with a Micromegas X-ray detector setup. The detector is a prototype in the context of the BabyIAXO helioscope, which is under construction to search for an emission of the hypothetical axion particle from the Sun. An important component of such a helioscope is a low background X-ray detector with a high efficiency in the 1–10 keV energy range. The goal of the measurement was to study techniques for background discrimination. In addition to common techniques we used a multi-layer veto system designed to tag cosmic-ray induced neutron background. Over an effective time of 52 days, a background level of 8.6 × 10<jats:sup>−7</jats:sup> counts keV<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup> s<jats:sup>−1</jats:sup> was reached in a laboratory at above ground level. This is the lowest background level achieved at surface level. In this paper we present the experimental setup, show simulations of the neutron-induced background, and demonstrate the process to identify background signals in the data. Finally, prospects to reach lower background levels down to 10<jats:sup>–7</jats:sup> counts keV<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup> s<jats:sup>−1</jats:sup> are discussed.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • simulation