Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Blanch, César

  • Google
  • 1
  • 10
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Dielectric assist accelerating structures for compact linear accelerators of low energy particles in hadrontherapy treatments1citations

Places of action

Chart of shared publication
Martinez-Reviriego, Pablo
1 / 1 shared
Grudiev, Alexej
1 / 3 shared
Esperante, Daniel
1 / 1 shared
Gimeno, Benito
1 / 1 shared
González-Iglesias, Daniel
1 / 1 shared
Fuster, Juan
1 / 1 shared
Fuster-Martínez, Nuria
1 / 1 shared
Martín-Luna, Pablo
1 / 1 shared
Menendez, Abraham
1 / 1 shared
Martínez, Eduardo
1 / 5 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Martinez-Reviriego, Pablo
  • Grudiev, Alexej
  • Esperante, Daniel
  • Gimeno, Benito
  • González-Iglesias, Daniel
  • Fuster, Juan
  • Fuster-Martínez, Nuria
  • Martín-Luna, Pablo
  • Menendez, Abraham
  • Martínez, Eduardo
OrganizationsLocationPeople

article

Dielectric assist accelerating structures for compact linear accelerators of low energy particles in hadrontherapy treatments

  • Martinez-Reviriego, Pablo
  • Grudiev, Alexej
  • Esperante, Daniel
  • Gimeno, Benito
  • Blanch, César
  • González-Iglesias, Daniel
  • Fuster, Juan
  • Fuster-Martínez, Nuria
  • Martín-Luna, Pablo
  • Menendez, Abraham
  • Martínez, Eduardo
Abstract

<jats:p>Dielectric Assist Accelerating (DAA) structures based on ultralow-loss ceramic are being studied as an alternative to conventional disk-loaded copper cavities. This accelerating structure consists of dielectric disks with irises arranged periodically in metallic structures working under the TM<jats:sub>02</jats:sub>-<jats:italic>π</jats:italic> mode. In this paper, the numerical design of an S-band DAA structure for low beta particles, such as protons or carbon ions used for Hadrontherapy treatments, is shown. Four dielectric materials with different permittivity and loss tangent are studied as well as different particle velocities. Through optimization, a design that concentrates most of the RF power in the vacuum space near the beam axis is obtained, leading to a significant reduction of power loss on the metallic walls. This allows to fabricate cavities with an extremely high quality factor, over 100,000, and shunt impedance over 300 MΩ/m at room temperature. During the numerical study, the design optimization has been improved by adjusting some of the cell parameters in order to both increase the shunt impedance and reduce the peak electric field in certain locations of the cavity, which can lead to instabilities in its normal functioning.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • copper
  • ceramic