Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kyritsakis, Andreas

  • Google
  • 10
  • 31
  • 93

University of Tartu

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Polarization characteristics and structural modifications of Cu nanoparticles under high electric fieldscitations
  • 2023Biased self-diffusion on Cu surface due to electric field gradients3citations
  • 2023Critical review on experimental and theoretical studies of elastic properties of wurtzite-structured ZnO nanowires13citations
  • 2022Thermal, Mechanical, and Acoustic Properties of Polydimethylsiloxane Filled with Hollow Glass Microspheres11citations
  • 2022Biased self-diffusion on Cu surface due to electric field gradients3citations
  • 2020Tungsten migration energy barriers for surface diffusion5citations
  • 2019Ab initio calculation of field emission from metal surfaces with atomic-scale defects15citations
  • 2016Atomistic modeling of metal surfaces under high electric fields3citations
  • 2016Effects of control oxide material on the charging times of metal nanoparticles inside non-volatile memoriescitations
  • 2016Extension of the general thermal field equation for nanosized emitters40citations

Places of action

Chart of shared publication
Zadin, Veronika
5 / 6 shared
Wang, Ye
1 / 1 shared
Kimari, Jyri Kalevi
2 / 2 shared
Djurabekova, Flyura
1 / 11 shared
Wang, Ye
2 / 4 shared
Vahtrus, Mikk
1 / 1 shared
Bocharov, Dmitry
1 / 2 shared
Polyakov, Boris
1 / 3 shared
Oras, Sven
2 / 4 shared
Vlassov, Sergei
2 / 4 shared
Šutka, Andris
1 / 2 shared
Dorogin, Leonid
1 / 5 shared
Timusk, Martin
1 / 1 shared
Tiirats, Tauno
1 / 1 shared
Sosnin, Ilya M.
1 / 1 shared
Linarts, Artis
1 / 2 shared
Lõhmus, Rünno
1 / 1 shared
Djurabekova, Flyura Gatifovna
4 / 37 shared
Vigonski, Simon
1 / 7 shared
Baibuz, Ekaterina
1 / 7 shared
Jansson, Ville
1 / 9 shared
Zadin, Vahur
3 / 11 shared
Aabloo, Alvo
1 / 8 shared
Toijala, H.
1 / 1 shared
Eimre, K.
1 / 3 shared
Veske, Mihkel
1 / 2 shared
Aare, Robert
1 / 1 shared
Eimre, Kristjan
1 / 5 shared
Anastasopoulos, A.
1 / 5 shared
Xanthakis, J. P.
2 / 2 shared
Beniakar, M.
1 / 1 shared
Chart of publication period
2024
2023
2022
2020
2019
2016

Co-Authors (by relevance)

  • Zadin, Veronika
  • Wang, Ye
  • Kimari, Jyri Kalevi
  • Djurabekova, Flyura
  • Wang, Ye
  • Vahtrus, Mikk
  • Bocharov, Dmitry
  • Polyakov, Boris
  • Oras, Sven
  • Vlassov, Sergei
  • Šutka, Andris
  • Dorogin, Leonid
  • Timusk, Martin
  • Tiirats, Tauno
  • Sosnin, Ilya M.
  • Linarts, Artis
  • Lõhmus, Rünno
  • Djurabekova, Flyura Gatifovna
  • Vigonski, Simon
  • Baibuz, Ekaterina
  • Jansson, Ville
  • Zadin, Vahur
  • Aabloo, Alvo
  • Toijala, H.
  • Eimre, K.
  • Veske, Mihkel
  • Aare, Robert
  • Eimre, Kristjan
  • Anastasopoulos, A.
  • Xanthakis, J. P.
  • Beniakar, M.
OrganizationsLocationPeople

article

Polarization characteristics and structural modifications of Cu nanoparticles under high electric fields

  • Kyritsakis, Andreas
  • Zadin, Veronika
  • Wang, Ye
Abstract

High electric fields affect the diffusion dynamics of atoms on a metal surface, causing biased surface diffusion that possibly leads to the growth of intensively field emitting protrusions and consequent vacuum breakdown (VBD). The scientific understanding of this process, as well as other fundamental VBD initiation mechanisms, is far from complete. Here we investigate the exact atomic behaviour of metal surfaces exposed to extremely high electric fields using density functional theory (DFT). Previous theories describe the field-surface dynamics in terms of the effective dipole moments and polarizability of surface atoms, disregarding higher-order (hyperpolarizability) terms. The validity of this approximation has been evaluated only for electric fields up to 3 GV/m, due to computational limitations of the plane-wave DFT basis used in previous works. In this work, we test the validity of this approximation for a much wider field range, relevant for VBD and field emission (FE), using Cu nanoparticles as our test structures. We find that although such high fields can change the entire structure of Cu nanoparticles, their energetics are described very precisely by the permanent dipole moment and polarizability terms. Thus, we show that neglecting the hyperpolarizability terms is valid even for field values that exceeds the range that is relevant for intense FE and VBD. This work lays a solid foundation for further developing atomic-level simulation models for electric field-induced surface diffusion on metal surfaces and its effects on protrusion growth and VBD initiation. ; Peer reviewed

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • surface
  • theory
  • simulation
  • density functional theory