Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hammami, Saber

  • Google
  • 3
  • 10
  • 12

CEA LETI

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Enhancement of the physical adsorption of some insoluble lead compounds from drinking water onto polylactic acid and graphene oxide using molybdenum disulfide nanoparticles: Theoretical investigation4citations
  • 2021Theoretical Investigation of the Adsorption of Cadmium Iodide from Water Using Polyaniline Polymer Filled with TiO2 and ZnO Nanoparticles3citations
  • 2020Electrical conduction in dielectric elastomer transducers5citations

Places of action

Chart of shared publication
Alsaiari, Norah Salem
1 / 5 shared
Amari, Abdelfattah
2 / 3 shared
Osman, Haitham
1 / 1 shared
Mahdhi, Noureddine
2 / 4 shared
Alzahrani, Fatimah
1 / 1 shared
Alsaiari, Norah
1 / 3 shared
Katubi, Khadijah Mohammedsaleh M.
1 / 1 shared
Jomni, Fethi
1 / 1 shared
Jean-Mistral, Claire
1 / 6 shared
Sylvestre, Alain
1 / 20 shared
Chart of publication period
2023
2021
2020

Co-Authors (by relevance)

  • Alsaiari, Norah Salem
  • Amari, Abdelfattah
  • Osman, Haitham
  • Mahdhi, Noureddine
  • Alzahrani, Fatimah
  • Alsaiari, Norah
  • Katubi, Khadijah Mohammedsaleh M.
  • Jomni, Fethi
  • Jean-Mistral, Claire
  • Sylvestre, Alain
OrganizationsLocationPeople

article

Enhancement of the physical adsorption of some insoluble lead compounds from drinking water onto polylactic acid and graphene oxide using molybdenum disulfide nanoparticles: Theoretical investigation

  • Alsaiari, Norah Salem
  • Hammami, Saber
  • Amari, Abdelfattah
  • Osman, Haitham
  • Mahdhi, Noureddine
Abstract

<jats:p>This study reports the enhancement of the physical adsorption of some insoluble lead compounds, from drinking water, onto polylactic acid (PLA) polymer and graphene oxide (GO) by filling with molybdenum disulfide (MoS<jats:sub>2</jats:sub>) nanoparticles (NPs). Based on the Lifshitz theory, we demonstrate the attractive nature of the van der Waals (vdW) interactions that are responsible for the physical adsorption between the cerussite (PbCO<jats:sub>3</jats:sub>), the pyromorphite (Pb<jats:sub>5</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub>Cl), and the lead dioxide (PbO<jats:sub>2</jats:sub>) insoluble adsorbates and the GO/MoS<jats:sub>2</jats:sub> and PLA/MoS<jats:sub>2</jats:sub> adsorbent nanocomposites in water medium. Subsequently, we show an increase in the physical adsorption, at close and large separation distances (&amp;lt;100 nm) in the water medium, between the lead-insoluble adsorbate and the adsorbent GO/MoS<jats:sub>2</jats:sub> and PLA/MoS<jats:sub>2</jats:sub> nanocomposites by increasing the filling ratios (0%, 10%, 20%, and 30%) of MoS<jats:sub>2</jats:sub> NPs. Moreover, for each lead-insoluble adsorbate, we demonstrate that the vdW adsorption potential and force were more important for GO/MoS<jats:sub>2</jats:sub> than for PLA/MoS<jats:sub>2</jats:sub> adsorbent. However, for a fixed filling rate, the physical adsorption was more important in the order PbO<jats:sub>2</jats:sub> &amp;gt; Pb<jats:sub>5</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub>Cl &amp;gt; PbCO<jats:sub>3</jats:sub>. Interestingly, we demonstrate that the physical adsorption strongly depended on the GO/MoS<jats:sub>2</jats:sub> and PLA/MoS<jats:sub>2</jats:sub> adsorbent type and weakly dependent to the lead compound adsorbates. For all “PbO<jats:sub>2</jats:sub>, Pb<jats:sub>5</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub>Cl, and PbCO<jats:sub>3</jats:sub>” adsorbates, we demonstrate that the vdW adsorption potential and force were higher ∼6, ∼3.1, ∼2.2, and ∼1.9 times for GO than for PLA adsorbent for, respectively, filling ratios 0%, 10%, 20%, and 30% of MoS<jats:sub>2</jats:sub> NPs.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • compound
  • molybdenum
  • polymer
  • theory