Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Facsko, Stefan

  • Google
  • 7
  • 65
  • 95

Helmholtz-Zentrum Dresden-Rossendorf

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023Bottom-up fabrication of FeSb2 nanowires on crystalline GaAs substrates with ion-induced pre-patterningcitations
  • 2023Enhanced Luminescence of Yb3+ Ions Implanted to ZnO through the Selection of Optimal Implantation and Annealing Conditions7citations
  • 2021Impact of low energy ion beams on the properties of rr-P3HT filmscitations
  • 2019Nanoscale modification of one-dimensional single-crystalline cuprous oxide17citations
  • 2019Nanoscale n(++)-p junction formation in GeOI probed by tip-enhanced Raman spectroscopy and conductive atomic force microscopy5citations
  • 2018Nematicity of correlated systems driven by anisotropic chemical phase separation12citations
  • 2013Forming-free resistive switching in multiferroic BiFeO3 thin films with enhanced nanoscale shunts54citations

Places of action

Chart of shared publication
Weinert, Tom
1 / 1 shared
Erb, Denise J.
1 / 1 shared
Hübner, René
3 / 25 shared
Jóźwik, Przemysław
1 / 1 shared
Gieraltowska, Sylwia
1 / 2 shared
Wozniak, Wojciech
1 / 1 shared
Romaniuk, Svitlana
1 / 1 shared
Ratajczak, Renata
1 / 1 shared
Guziewicz, Elzbieta
1 / 2 shared
Prucnal, Slawomir
3 / 11 shared
Kentsch, Ulrich
2 / 7 shared
Barlak, Marek
1 / 7 shared
Mieszczynski, Cyprian
1 / 2 shared
Heller, René
1 / 4 shared
Krause, Matthias
1 / 16 shared
Kislyuk, Victor
1 / 1 shared
Lytvyn, Peter
1 / 4 shared
Akhmadaliev, Shavkat
1 / 3 shared
Noskov, Yuriy
1 / 3 shared
Kotrechko, Sergiy
1 / 3 shared
Osiponok, Mykola
1 / 1 shared
Melnyk, Andrii
1 / 1 shared
Trachevskij, Volodymyr
1 / 1 shared
Pud, Alexander
1 / 6 shared
Ogurtsov, Nikolay
1 / 5 shared
Dzyazko, Yulia
1 / 1 shared
Chatterjee, Shyamal
1 / 2 shared
Rajbhar, Manoj K.
1 / 1 shared
Das, Pritam
1 / 2 shared
Möller, Wolfhard
1 / 7 shared
Georgiev, Yordan Nikolaev
1 / 1 shared
Hübner, Renè
1 / 1 shared
Knoch, Joachim
1 / 1 shared
Schoenherr, Tommy
1 / 1 shared
Engler, Martin
1 / 3 shared
Skorupa, Wolfgang
1 / 6 shared
Wang, Mao
2 / 2 shared
Berencen, Yonder
1 / 4 shared
Zahn, D. R. T.
1 / 17 shared
Khan, Mb
1 / 1 shared
Kalbacova, Jana
1 / 1 shared
Boettger, Roman
1 / 4 shared
Erbe, Artur
1 / 5 shared
Vines, Lasse
1 / 24 shared
Zhou, Shengqiang
3 / 15 shared
Helm, Manfred
3 / 13 shared
Birowska, Magdalena
1 / 2 shared
Sawicki, Maciej
1 / 19 shared
Potzger, Kay
1 / 6 shared
Böttger, Roman
1 / 7 shared
Jakiela, Rafal
1 / 8 shared
Dietl, Tomasz
1 / 262 shared
Xu, Chi
1 / 2 shared
Yuan, Ye
1 / 2 shared
Majewski, Jacek A.
1 / 8 shared
Kögler, Reinhard
1 / 1 shared
Schmidt, Heidemarie
1 / 9 shared
Luo, Wenbo
1 / 2 shared
Ou, Xin
1 / 1 shared
Shuai, Yao
1 / 3 shared
Mikolajick, Thomas
1 / 92 shared
Fiedler, Jan
1 / 2 shared
Schmidt, Oliver G.
1 / 25 shared
Reuther, Helfried
1 / 5 shared
Siles, Pablo F.
1 / 3 shared
Chart of publication period
2023
2021
2019
2018
2013

Co-Authors (by relevance)

  • Weinert, Tom
  • Erb, Denise J.
  • Hübner, René
  • Jóźwik, Przemysław
  • Gieraltowska, Sylwia
  • Wozniak, Wojciech
  • Romaniuk, Svitlana
  • Ratajczak, Renata
  • Guziewicz, Elzbieta
  • Prucnal, Slawomir
  • Kentsch, Ulrich
  • Barlak, Marek
  • Mieszczynski, Cyprian
  • Heller, René
  • Krause, Matthias
  • Kislyuk, Victor
  • Lytvyn, Peter
  • Akhmadaliev, Shavkat
  • Noskov, Yuriy
  • Kotrechko, Sergiy
  • Osiponok, Mykola
  • Melnyk, Andrii
  • Trachevskij, Volodymyr
  • Pud, Alexander
  • Ogurtsov, Nikolay
  • Dzyazko, Yulia
  • Chatterjee, Shyamal
  • Rajbhar, Manoj K.
  • Das, Pritam
  • Möller, Wolfhard
  • Georgiev, Yordan Nikolaev
  • Hübner, Renè
  • Knoch, Joachim
  • Schoenherr, Tommy
  • Engler, Martin
  • Skorupa, Wolfgang
  • Wang, Mao
  • Berencen, Yonder
  • Zahn, D. R. T.
  • Khan, Mb
  • Kalbacova, Jana
  • Boettger, Roman
  • Erbe, Artur
  • Vines, Lasse
  • Zhou, Shengqiang
  • Helm, Manfred
  • Birowska, Magdalena
  • Sawicki, Maciej
  • Potzger, Kay
  • Böttger, Roman
  • Jakiela, Rafal
  • Dietl, Tomasz
  • Xu, Chi
  • Yuan, Ye
  • Majewski, Jacek A.
  • Kögler, Reinhard
  • Schmidt, Heidemarie
  • Luo, Wenbo
  • Ou, Xin
  • Shuai, Yao
  • Mikolajick, Thomas
  • Fiedler, Jan
  • Schmidt, Oliver G.
  • Reuther, Helfried
  • Siles, Pablo F.
OrganizationsLocationPeople

article

Bottom-up fabrication of FeSb2 nanowires on crystalline GaAs substrates with ion-induced pre-patterning

  • Facsko, Stefan
  • Weinert, Tom
  • Erb, Denise J.
  • Hübner, René
Abstract

<jats:p>In recent decades, nanostructuring has become one of the most important techniques to design and engineer functional materials. The properties of nanostructured materials are influenced by the interplay of its instrinsic bulk properties and the properties of its surface - the relative importance of the latter being enhanced by the increased surface-to-volume ratio in nanostructures. For instance, nanostructuring of a thermoelectric material can reduce the thermal conductivity while maintaining constant electrical conductivity and the Seebeck coefficient, which would improve the thermoelectric properties. For that reason, this study investigated the possibility of preparing nanowires of iron antimonide (FeSb<jats:sub>2</jats:sub>), a thermoelectric material, on single-crystalline gallium arsenide GaAs (001) substrates with ion-induced surface nanoscale pre-patterning and characterized the structure of the prepared FeSb<jats:sub>2</jats:sub> nanowires. The GaAs (001) substrates were pre-patterned using 1 keV Ar<jats:sup>+</jats:sup> ion irradiation. By using an ion source with a broad, unfocused ion beam at normal incidence, the patterned area can be scaled to nearly any size. The self-organized surface morphology is formed by reverse epitaxy and is characterized by almost perfectly parallel-aligned ripples at the nanometer scale. For the fabrication of FeSb<jats:sub>2</jats:sub> nanowires, iron and antimony were successively deposited on the pre-patterned GaAs substrates at grazing incidence and then annealed. They were characterized using transmission electron microscopy (TEM), in particular high-resolution TEM imaging for structure analysis and spectrum imaging analysis based on energy-dispersive X-ray spectroscopy for element characterization. With the presented fabrication method, FeSb<jats:sub>2</jats:sub> nanowires were produced successfully on GaAs(001) substrates with an ion-induced nanopatterned surface. The nanowires have a polycristalline structure and a cross-sectional area which is scalable up to 22 × 22 nm<jats:sup>2</jats:sup>. Due to the high order nanostructures on the GaAs substrate, the nanowires have a length of several micrometer. This bottom-up nanofabrication process based on ion-induced patterning can be a viable alternative to top-down procedures regarding to efficiency and costs.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • transmission electron microscopy
  • iron
  • Energy-dispersive X-ray spectroscopy
  • thermal conductivity
  • electrical conductivity
  • Gallium
  • aligned
  • Antimony