People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Procel, Paul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Opto-electrical modelling and roadmap for 2T monolithic Perovskite/CIGS tandem solar cellscitations
- 2022The fundamental operation mechanisms of nc-SiOX≥0:H based tunnel recombination junctions revealedcitations
- 2022Slow Shallow Energy States as the Origin of Hysteresis in Perovskite Solar Cellscitations
- 2022Future of n-type PV
- 2022Introducing a comprehensive physics-based modelling framework for tandem and other PV systemscitations
- 2022Raman spectroscopy of silicon with nanostructured surfacecitations
- 2022Achieving 23.83% conversion efficiency in silicon heterojunction solar cell with ultra-thin MoOx hole collector layer via tailoring (i)a-Si:H/MoOx interfacecitations
- 2021Design and optimization of hole collectors based on nc-SiOx:H for high-efficiency silicon heterojunction solar cellscitations
- 2021On current collection from supporting layers in perovskite/c-Si tandem solar cellscitations
- 2020Copper-Plating Metallization With Alternative Seed Layers for c-Si Solar Cells Embedding Carrier-Selective Passivating Contactscitations
- 2020Realizing the Potential of RF-Sputtered Hydrogenated Fluorine-Doped Indium Oxide as an Electrode Material for Ultrathin SiO x/Poly-Si Passivating Contactscitations
- 2019Effective Passivation of Black Silicon Surfaces via Plasma-Enhanced Chemical Vapor Deposition Grown Conformal Hydrogenated Amorphous Silicon Layercitations
- 2018Poly-crystalline silicon-oxide films as carrier-selective passivating contacts for c-Si solar cellscitations
- 2017Poly-Si(O)x passivating contacts for high-efficiency c-Si IBC solar cellscitations
Places of action
Organizations | Location | People |
---|
article
Slow Shallow Energy States as the Origin of Hysteresis in Perovskite Solar Cells
Abstract
Organic-inorganic metal halide perovskites have attracted a considerable interest in the photovoltaic scientific community demonstrating a rapid and unprecedented increase in conversion efficiency in the last decade. Besides the stunning progress in performance, the understanding of the physical mechanisms and limitations that govern perovskite solar cells are far to be completely unravelled. In this work, we study the origin of their hysteretic behaviour from the standpoint of fundamental semiconductor physics by means of technology computer aided design electrical simulations. Our findings identify that the density of shallow interface defects at the interfaces between perovskite and transport layers plays a key role in hysteresis phenomena. Then, by comparing the defect distributions in both spatial and energetic domains for different bias conditions and using fundamental semiconductor equations, we can identify the driving force of hysteresis in terms of slow recombination processes and charge distributions.