People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Patel, Ashish
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Synthesis and characterization of titanium dioxide nanoparticles from Bacillus subtilis MTCC 8322 and its application for the removal of methylene blue and orange G dyes under UV light and visible lightcitations
- 2023Recent advances in the effective removal of hazardous pollutants from wastewater by using nanomaterials—A reviewcitations
- 2023Phytonanofabrication of iron oxide particles from the Acacia jacquemontii plant and their potential application for the removal of brilliant green and Congo red dye from wastewatercitations
- 20234-Dimensional printing: exploring current and future capabilities in biomedical and healthcare systems—a Concise reviewcitations
- 2023Hippophae rhamnoides L. (sea buckthorn) mediated green synthesis of copper nanoparticles and their application in anticancer activitycitations
- 2017Study of as-cast structure formation in Titanium alloy
Places of action
Organizations | Location | People |
---|
article
Hippophae rhamnoides L. (sea buckthorn) mediated green synthesis of copper nanoparticles and their application in anticancer activity
Abstract
<jats:p>Green synthesis of nanoparticles has drawn huge attention in the last decade due to their eco-friendly, biocompatible nature. Phyto-assisted synthesis of metallic nanoparticles is widespread in the field of nanomedicine, especially for antimicrobial and anticancer activity. Here in the present research work, investigators have used the stem extract of the Himalayan plant <jats:italic>Hippophae rhamnoides</jats:italic> L, for the synthesis of copper nanoparticles (CuNPs). The synthesized of CuNPs were analyzed by using sophisticated instruments, i.e., Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), high-performance liquid chromatography (HPLC), and scanning electron microscope (SEM). The size of the synthesized CuNPs was varying from 38 nm to 94 nm which were mainly spherical in shape. Further, the potential of the synthesized CuNPs was evaluated as an anticancer agent on the Hela cell lines, by performing an MTT assay. In the MTT assay, a concentration-dependent activity of CuNPs demonstrated the lower cell viability at 100 μg/mL and IC<jats:sub>50</jats:sub> value at 48 μg/mL of HeLa cancer cell lines. In addition to this, apoptosis activity was evaluated by reactive oxygen species (ROS), DAPI (4′,6-diamidino-2-phenylindole) staining, Annexin V, and Propidium iodide (PI) staining, wherein the maximum ROS production was at a dose of 100 µg per mL of CuNPs with a higher intensity of green fluorescence. In both DAPI and PI staining, maximum nuclear condensation was observed with 100 μg/mL of CuNPs against HeLa cell lines.</jats:p>