People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wang, Yi
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Virtual data-driven optimisation for zero defect composites manufacturecitations
- 2024CNC-Machined and 3D-Printed Metal G-band Diplexers for Earth Observation Applicationscitations
- 2023A comprehensive modelling framework for defect prediction in automated fibre placement of composites
- 2023A monolithically printed filtering waveguide aperture antennacitations
- 2023Lightweight, High-Q and High Temperature Stability Microwave Cavity Resonators Using Carbon-Fiber Reinforced Silicon-Carbide Ceramic Compositecitations
- 2023Modelling the Effect of Process Conditions on Steering-Induced Defects in Automated Fibre Placement (AFP)citations
- 2023Compact Self-Supportive Filters Suitable for Additive Manufacturingcitations
- 2023Compact Monolithic 3D-Printed Wideband Filters Using Pole-Generating Resonant Irisescitations
- 2023Evaluation of 3D printed monolithic G-band waveguide componentscitations
- 2022A MODELLING FRAMEWORK FOR THE EVOLUTION OF PREPREG TACK UNDER PROCESSING CONDITIONS
- 2022A 3D printed 300 GHz waveguide cavity filter by micro laser sinteringcitations
- 2022D-band waveguide diplexer fabricated using micro laser sinteringcitations
- 2022A Narrowband 3-D Printed Invar Spherical Dual-Mode Filter With High Thermal Stability for OMUXscitations
- 2022Understanding tack behaviour during prepreg-based composites’ processingcitations
- 2022Compact monolithic SLM 3D-printed filters using pole-generating resonant irisescitations
- 2022Thermal stability analysis of 3D printed resonators using novel materialscitations
- 2021Characterization of Biofilm Formation by Mycobacterium chimaera on Medical Device Materialscitations
- 2021125 GHz frequency doubler using a waveguide cavity produced by stereolithographycitations
- 20213D printed re-entrant cavity resonator for complex permittivity measurement of crude oilscitations
- 2021Two‐GHz hybrid coaxial bandpass filter fabricated by stereolithography 3‐D printing
- 20213D printed coaxial microwave resonator sensor for dielectric measurements of liquidcitations
- 2021Investigation of a 3D-printed narrowband filter with non-resonating nodescitations
- 2021Hypo-viscoelastic modelling of in-plane shear in UD thermoset prepregscitations
- 2020180 GHz Waveguide Bandpass Filter Fabricated by 3D Printing Technologycitations
- 2020Experimental characterisation of the in-plane shear behaviour of UD thermoset prepregs under processing conditionscitations
- 2019Modelling of the in-plane shear behavior of uncured thermoset prepreg
- 2018Experimental Characterisation of In-plane Shear Behaviour of Uncured Thermoset Prepregs
Places of action
Organizations | Location | People |
---|
article
Characterization of Biofilm Formation by Mycobacterium chimaera on Medical Device Materials
Abstract
<jats:p>Non-tuberculous mycobacteria (NTM) are widespread in the environment and are a public health concern due to their resistance to antimicrobial agents. The colonization of surgical heater-cooler devices (HCDs) by the slow-growing NTM species <jats:italic>Mycobacterium chimaera</jats:italic> has recently been linked to multiple invasive infections in patients worldwide. The resistance of <jats:italic>M. chimaera</jats:italic> to antimicrobials may be aided by a protective biofilm matrix of extracellular polymeric substances (EPS). This study explored the hypothesis that <jats:italic>M. chimaera</jats:italic> can form biofilms on medically relevant materials. Several <jats:italic>M. chimaera</jats:italic> strains, including two HCD isolates, were used to inoculate a panel of medical device materials. <jats:italic>M. chimaera</jats:italic> colonization of the surfaces was monitored for 6 weeks. <jats:italic>M. chimaera</jats:italic> formed a robust biofilm at the air-liquid interface of borosilicate glass tubes, which increased in mass over time. <jats:italic>M. chimaera</jats:italic> was observed by 3D Laser Scanning Microscopy to have motility during colonization, and form biofilms on stainless steel, titanium, silicone and polystyrene surfaces during the first week of inoculation. Scanning electron microscopy (SEM) of <jats:italic>M. chimaera</jats:italic> biofilms after 4 weeks of inoculation showed that <jats:italic>M. chimaera</jats:italic> cells were enclosed entirely in extracellular material, while cryo-preserved SEM samples further revealed that an ultrastructural component of the EPS matrix was a tangled mesh of 3D fiber-like projections connecting cells. Considering that slow-growing <jats:italic>M. chimaera</jats:italic> typically has culture times on the order of weeks, the microscopically observed ability to rapidly colonize stainless steel and titanium surfaces in as little as 24 h after inoculation is uncharacteristic. The insights that this study provides into <jats:italic>M. chimaera</jats:italic> colonization and biofilm formation of medical device materials are a significant advance in our fundamental understanding of <jats:italic>M. chimaera</jats:italic> surface interactions and have important implications for research into novel antimicrobial materials, designs and other approaches to help reduce the risk of infection.</jats:p>