People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yasir, Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024In situ polyaniline polymerization on electrospun cellulose acetate nanofibers derived from recycled waste filter butts of cigarettes for the enhanced removal of methyl orange and rhodaminecitations
- 2024Impact of cyclic thermal shocks on the electrochemical and tribological properties of Fe-based amorphous coatingcitations
- 2024Study of Graphene Oxide and Silver Nanowires Interactions and Its Association with Electromagnetic Shielding Effectivenesscitations
- 2024Shifting from sustained to delayed drug delivery systems: Encapsulated mesoporous silica-chitosan grafted polylactic acid-based composite approachcitations
- 2023Enhancement of antibacterial properties, surface morphology and In vitro bioactivity of hydroxyapatite-zinc oxide nanocomposite coating by electrophoretic deposition techniquecitations
- 2023Enhancement of Antibacterial Properties, Surface Morphology and In Vitro Bioactivity of Hydroxyapatite-Zinc Oxide Nanocomposite Coating by Electrophoretic Deposition Techniquecitations
- 2023Boosting photocatalytic degradation of estrone hormone by silica-supported g-C3N4/WO3 using response surface methodology coupled with Box-Behnken design
- 2023Photocatalytic degradation of atrazine and abamectin using <i>Chenopodium album</i> leaves extract mediated copper oxide nanoparticlescitations
- 2022Development and Characterization of Zein/Ag-Sr Doped Mesoporous Bioactive Glass Nanoparticles Coatings for Biomedical Applicationscitations
- 2022Melimine-modified 3D-printed polycaprolactone scaffolds for the prevention of biofilm-related biomaterial infectionscitations
- 2020Enhanced Tribological Properties of LA43M Magnesium Alloy by Ni60 Coating via Ultra-High-Speed Laser Claddingcitations
- 2020Mechanism of Action of Surface Immobilized Antimicrobial Peptides Against Pseudomonas aeruginosacitations
- 2019Quantifying the effects of basalt fibers on thermal degradation and fire performance of epoxy-based intumescent coating for fire protection of steel substratecitations
- 2019High-Performance Anticorrosive Polyester Coatings on Mild Steel in Mixed Acid Mixtures Environmentscitations
- 2017THE EFFECT OF CARBON NANOTUBES CONCENTRATION ON COMPLEX PERMITTIVITY OF NANOCOMPOSITEScitations
- 2015Oxidation of the GaAs semiconductor at the Al2O3/GaAs junctioncitations
- 2015Oxidation of the GaAs semiconductor at the Al2O3/GaAs junctioncitations
- 2014Wide band characterization of MWCNTs composites based on epoxy resincitations
Places of action
Organizations | Location | People |
---|
article
Mechanism of Action of Surface Immobilized Antimicrobial Peptides Against Pseudomonas aeruginosa
Abstract
<p>Bacterial colonization and biofilm development on medical devices can lead to infection. Antimicrobial peptide-coated surfaces may prevent such infections. Melimine and Mel4 are chimeric cationic peptides showing broad-spectrum antimicrobial activity once attached to biomaterials and are highly biocompatible in animal models and have been tested in Phase I and II/III human clinical trials. These peptides were covalently attached to glass using an azidobenzoic acid linker. Peptide attachment was confirmed using X-ray photoelectron spectroscopy and amino acid analysis. Mel4 when bound to glass was able to adopt a more ordered structure in the presence of bacterial membrane mimetic lipids. The ability of surface bound peptides to neutralize endotoxin was measured along with their interactions with the bacterial cytoplasmic membrane which were analyzed using DiSC(3)-5 and Sytox green, Syto-9, and PI dyes with fluorescence microscopy. Leakage of ATP and nucleic acids from cells were determined by analyzing the surrounding fluid. Attachment of the peptides resulted in increases in the percentage of nitrogen by 3.0% and 2.4%, and amino acid concentrations to 0.237 nmole and 0.298 nmole per coverslip on melimine and Mel4 coated surfaces, respectively. The immobilized peptides bound lipopolysaccharide and disrupted the cytoplasmic membrane potential of Pseudomonas aeruginosa within 15 min. Membrane depolarization was associated with a reduction in bacterial viability by 82% and 63% for coatings melimine and Mel4, respectively (p < 0.001). Disruption of membrane potential was followed by leakage of ATP from melimine (1.5 ± 0.4 nM) or Mel4 (1.3 ± 0.2 nM) coated surfaces compared to uncoated glass after 2 h (p < 0.001). Sytox green influx started after 3 h incubation with either peptide. Melimine coatings yielded 59% and Mel4 gave 36% PI stained cells after 4 h. Release of the larger molecules (DNA/RNA) commenced after 4 h for melimine (1.8 ± 0.9 times more than control; p = 0.008) and after 6 h with Mel4 (2.1 ± 0.2 times more than control; p < 0.001). The mechanism of action of surface bound melimine and Mel4 was similar to that of the peptides in solution, however, their immobilization resulted in much slower (approximately 30 times) kinetics.</p>