Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pattar, Jagannath

  • Google
  • 1
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Investigation of AA6063-based metal–matrix composites reinforced with TiO2 dispersoids through digitally assisted techniques for mechanical, tribological, and microstructural characterizations1citations

Places of action

Chart of shared publication
Malghan, Rashmi Laxmikant
1 / 1 shared
Kumar, Pawan
1 / 17 shared
M., Vishwanatha H.
1 / 1 shared
Ramesh, Dasappa
1 / 1 shared
Kumar, Ajay
1 / 9 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Malghan, Rashmi Laxmikant
  • Kumar, Pawan
  • M., Vishwanatha H.
  • Ramesh, Dasappa
  • Kumar, Ajay
OrganizationsLocationPeople

article

Investigation of AA6063-based metal–matrix composites reinforced with TiO2 dispersoids through digitally assisted techniques for mechanical, tribological, and microstructural characterizations

  • Malghan, Rashmi Laxmikant
  • Kumar, Pawan
  • M., Vishwanatha H.
  • Pattar, Jagannath
  • Ramesh, Dasappa
  • Kumar, Ajay
Abstract

<jats:p>Aluminum metal–matrix composites (AMMCs) were prepared by dispersing TiO<jats:sub>2</jats:sub> dispersoids of different volume fractions into an AA6063 matrix via stir casting and subjected to process–structure correlation studies. Four different samples based on weight ratio were considered herein: 99Al-1TiO<jats:sub>2</jats:sub>, 97Al-3TiO<jats:sub>2</jats:sub>, 95Al-5TiO<jats:sub>2</jats:sub>, and the as-received AA6063. Their mechanical properties namely, microhardness, tensile strength, and tribological behavior, were determined. In addition, the microstructure of the samples was also analysed. It was observed that the addition of 5% TiO<jats:sub>2</jats:sub> particles enabled the AA6063 matrix to accommodate a higher strain energy while providing the required driving force to generate dislocations and substructures. Therefore, considering the plastic deformation, the ultimate tensile strength <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m1"><mml:mrow><mml:mfenced open="(" close=")" separators="|"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mrow><mml:mi>u</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfenced></mml:mrow></mml:math></jats:inline-formula> increased gradually with the addition of TiO<jats:sub>2</jats:sub> (in weight%). The flow curves of the 95Al-5TiO<jats:sub>2</jats:sub> sample showed the highest value of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m2"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mrow><mml:mi>u</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula>, whereas the as-received AA6063 matrix exhibited the lowest value. For linear elastic deformation, AA6063 showed the lowest yield strength (<jats:italic>σ</jats:italic><jats:sub><jats:italic>ys</jats:italic></jats:sub>) as compared to the AMMC samples for all TiO<jats:sub>2</jats:sub> weight% values; however, the variation in <jats:italic>σ</jats:italic><jats:sub><jats:italic>ys</jats:italic></jats:sub> among the AMMC samples was minimal. The microhardness of the samples increased gradually with the addition of TiO<jats:sub>2</jats:sub>, and the percentage reduction in area at the fracture was largest for 95Al-5TiO<jats:sub>2</jats:sub>. The Taguchi’s L9 array and variance analysis of the process parameters indicated that the material wear was largely affected by the normal load, followed by weight% of TiO<jats:sub>2</jats:sub> and sliding speed. Wear surface characteristics, such as microvoids, delamination, microcracks, and wear debris, were qualitatively observed in all the AMMC samples. The overall strength improvement was attributable to the effects of addition of the dispersoids. During melt solidification, the TiO<jats:sub>2</jats:sub> particles surpassed/pinned and hindered the grain growth, resulting in grain-size refinement.</jats:p>

Topics
  • surface
  • polymer
  • grain
  • melt
  • aluminium
  • strength
  • composite
  • dislocation
  • casting
  • yield strength
  • tensile strength
  • solidification
  • grain growth