Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Musfeldt, Janice L.

  • Google
  • 1
  • 3
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024MPX3 van der Waals magnets under pressure (M = Mn, Ni, V, Fe, Co, Cd; X = S, Se)3citations

Places of action

Chart of shared publication
Matsuoka, Takahiro
1 / 2 shared
Kim, Heung-Sik
1 / 1 shared
Mandrus, David G.
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Matsuoka, Takahiro
  • Kim, Heung-Sik
  • Mandrus, David G.
OrganizationsLocationPeople

article

MPX3 van der Waals magnets under pressure (M = Mn, Ni, V, Fe, Co, Cd; X = S, Se)

  • Matsuoka, Takahiro
  • Kim, Heung-Sik
  • Mandrus, David G.
  • Musfeldt, Janice L.
Abstract

<jats:p>van der Waals antiferromagnets with chemical formula <jats:italic>M</jats:italic>P<jats:italic>X</jats:italic><jats:sub>3</jats:sub> (<jats:italic>M</jats:italic> = V, Mn, Fe, Co, Ni, Cd; <jats:italic>X</jats:italic> = S, Se) are superb platforms for exploring the fundamental properties of complex chalcogenides, revealing their structure-property relations and unraveling the physics of confinement. Pressure is extremely effective as an external stimulus, able to tune properties and drive new states of matter. In this review, we summarize experimental and theoretical progress to date with special emphasis on the structural, magnetic, and optical properties of the <jats:italic>M</jats:italic>P<jats:italic>X</jats:italic><jats:sub>3</jats:sub> family of materials. Under compression, these compounds host inter-layer sliding and insulator-to-metal transitions accompanied by dramatic volume reduction and spin state collapse, piezochromism, possible polar metal and orbital Mott phases, as well as superconductivity. Some responses are already providing the basis for spintronic, magneto-optic, and thermoelectric devices. We propose that strain may drive similar functionality in these materials.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • phase
  • superconductivity
  • superconductivity