Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khan, Omar M.

  • Google
  • 1
  • 6
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Effect of Mg incorporation on the properties of PCL/Mg composites for potential tissue engineering applications6citations

Places of action

Chart of shared publication
Velasquez, Carlos A.
1 / 2 shared
Pasha, Mujaheed
1 / 1 shared
Keyan, Kripa Subhadra
1 / 1 shared
Ali, Fawad
1 / 8 shared
Kalva, Sumama Nuthana
1 / 2 shared
Koç, Muammer
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Velasquez, Carlos A.
  • Pasha, Mujaheed
  • Keyan, Kripa Subhadra
  • Ali, Fawad
  • Kalva, Sumama Nuthana
  • Koç, Muammer
OrganizationsLocationPeople

article

Effect of Mg incorporation on the properties of PCL/Mg composites for potential tissue engineering applications

  • Velasquez, Carlos A.
  • Pasha, Mujaheed
  • Keyan, Kripa Subhadra
  • Ali, Fawad
  • Khan, Omar M.
  • Kalva, Sumama Nuthana
  • Koç, Muammer
Abstract

<jats:p>Polycaprolactone (PCL) is a biocompatible polymer readily moldable into various shapes and designs. However, its low mechanical strength and slow biodegradation restrict its use in tissue engineering. Magnesium (Mg), a biocompatible metal with excellent osteoconductivity and biodegradability, is a promising choice for tissue engineering applications. This study investigates the influence of Mg incorporation on the properties of PCL/Mg composites, aiming to evaluate their suitability for 3D-printable (3DP) tissue engineering applications. We synthesized a series of PCL/Mg composites with varying Mg concentrations and characterized their mechanical, thermal, and degradation properties. According to microscopic analysis of the composite films, the Mg particles are dispersed consistently throughout all the compositions. The findings demonstrated that adding Mg influenced PCL’s mechanical and thermal properties. The mechanical test results showed that the tensile strength of 15% Mg composite filaments improved by around 10% compared to the neat PCL filaments. However, the elastic modulus decreased by around 50% for the same composition. The thermal study revealed a significant reduction in the degradation temperature from above 400°C for pure PCL to around 300°C for PCL/Mg composite having 15% Mg. Additionally, the weight loss during <jats:italic>in vitro</jats:italic> degradation showed that the presence of Mg had significantly increased the degradation rate of composite samples. Also, Mg incorporation influences cell adhesion, with better attachment observed for 10% Mg 3DP samples. Overall, PCL/Mg composites offer a solution to overcome the limitation of low thermo-mechanical properties typically associated with the PCL.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • Magnesium
  • Magnesium
  • strength
  • composite
  • tensile strength
  • degradation temperature