People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Abhinav
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Optimization of surface roughness in milling of EN 24 steel with WC-Coated inserts using response surface methodology: analysis using surface integrity microstructural characterizationscitations
- 2024Biosurfactants in biocorrosion and corrosion mitigation of metals: An overviewcitations
- 2023The Microstructure and Properties of Ni-Si-La2O3 Coatings Deposited on 304 Stainless Steel by Microwave Claddingcitations
- 2023Prediction and simulation of mechanical properties of borophene-reinforced epoxy nanocomposites using molecular dynamics and FEAcitations
- 2023Effect of Pulsation in Microstructure and Mechanical Properties of Titanium Alloy-Annealed Welded Joints at Different Temperaturescitations
- 2022Diaminopyridine Hg(II)-based 1D supramolecular polymercitations
- 2022Ferrocene Appended Asymmetric Sensitizers with Azine Spacers with phenolic/nitro anchors for Dye-Sensitized Solar Cellscitations
- 2020A new 1D coordination polymer of triphenyl lead hydrosulfide: Synthesis and insights into crystal architecture and Hirshfeld surface analysescitations
- 2016Transition metal ferrocenyl dithiocarbamates functionalized dye-sensitized solar cells with hydroxy as an anchoring groupcitations
Places of action
Organizations | Location | People |
---|
article
Optimization of surface roughness in milling of EN 24 steel with WC-Coated inserts using response surface methodology: analysis using surface integrity microstructural characterizations
Abstract
<jats:p><jats:bold>Introduction:</jats:bold> Among alloys of medium-carbon and high-strength steel, EN 24 steel is characterised by its nickel-chromium-molybdenum composition. EN 24 steel is highly suitable for application in heavy-duty projects due to its notable resilience to damage, especially when exposed to low temperatures. With the objective of minimising surface irregularities, this research endeavours to enhance the milling process of EN 24 steel by employing coated tungsten carbide (WC) tool inserts.</jats:p><jats:p><jats:bold>Methods:</jats:bold> Feed rate, cutting speed, depth of cut, and cutting fluid are all crucial process factors in the experimental investigation. Four distinct levels are applied to each factor. The research utilises the Design of Experiments (DOE)-based Central Composite Design of Response Surface Methodology. To predict output parameters, mathematical models are developed utilising analysis of variance (ANOVA) for optimisation purposes.</jats:p><jats:p><jats:bold>Results and discussions:</jats:bold> Through the utilisation of multi-objective optimisation, the optimal combination for tungsten carbide inserts was determined, which provided surface irregularities of 0.301 µm. Cutting speed (CS) of 149.507 m/min, feed rate (FR) of 340.27 mm/min, depth of cut (DOC) of 0.599 mm, and cutting fluid (CF) of 12.50 L/min are the optimal parameters. The surface morphologies of the machined workpiece at particular parameter values can be discerned through scanning electron microscope (SEM) analysis, yielding significant insights. The optimal parameters that have been identified provide practical recommendations for improving the milling method of EN 24 steel when tungsten carbide inserts are utilised. Understanding the milling process in its entirety is facilitated by SEM analysis of surface morphologies and microstructures under particular cutting conditions. The morphology and surface irregularities of the machined workpiece are evaluated using profilometry, which provides additional insight into surface integrity. The discourse investigates the potential applications and implications of the results, as well as suggests directions for further study concerning the enhancement of milling processes for similar steel alloys.</jats:p>