People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahmad, Naveed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Evaluation of Pigment-Modified Clear Binders and Asphalts: An Approach towards Sustainable, Heat Harvesting, and Non-Black Pavementscitations
- 2023Synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) and their application as nano-fillers to improve the physical and mechanical properties of medium density fiberboardcitations
- 2023Facile Solution‐Processed Semiconductor/Metal Hybrid Nanoporous Materials; their Highly Photoredox Catalytic Powercitations
- 2022Effect of cenospheres on the engineering properties of lightweight cementitious composites : a comprehensive reviewcitations
- 2021Designing highly potential photocatalytic comprising silver deposited ZnO NPs with sulfurized graphitic carbon nitride (Ag/ZnO/S-g-C3N4) ternary compositecitations
- 2021Knowledge-Based Prediction of Load-Carrying Capacity of RC Flat Slab through Neural Network and FEMcitations
- 2021Critical role of the heterojunction interface of silver decorated ZnO nanocomposite with sulfurized graphitic carbon nitride heterostructure materials for photocatalytic applicationscitations
- 2021Evaluation of BaCo0.Fe-4(0).4Zr0.2-xNixO3-delta perovskite cathode using nickel as a sintering aid for IT-SOFCcitations
- 2020Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly(acrylic acid) microgel shell for efficient removal of methylene blue under visible lightcitations
- 2015Chemically modified bitumens with enhanced rheology and adhesion properties to siliceous aggregatescitations
- 2013Relationship between Rheology and Molecular Structure of Innovative Crystalline Elastomers
Places of action
Organizations | Location | People |
---|
article
Synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) and their application as nano-fillers to improve the physical and mechanical properties of medium density fiberboard
Abstract
<jats:p>Graphene is an advanced material in the carbon group and offers greater mechanical, electrical, structural, and optical properties. Graphene oxide (GO) and reduced graphene oxide (rGO) nanoparticles were synthesized and characterized and their special effects on enhancing the physio-mechanical characteristics of medium density fiberboard (MDF) were assessed. GO and rGO nanoparticles were added to urea formaldehyde (UF) resin at different weight percentages (1.0, 2.0, and 3.0 wt%) during the dosing process. To manufacture the MDF, nanofillers were created by sonication and combination with natural wood fibers. To observe the behavior of nanoparticles in the nanofillers, microstructure characterizations were conducted. The manufactured nano MDF samples underwent physical and mechanical testing. The incorporation of GO and rGO nanoparticles into UF resin led to significant improvements in the physical and mechanical properties of the MDF. The addition of GO and rGO nanoparticles at different weight percentages (1.0, 2.0, and 3.0 wt%) resulted in a range of improvements in thickness swelling (up to 53.3% and 35.2% for GO and rGO nanoparticles, respectively), water absorption (up to 23.3% and 63.15%, respectively), and thermal conductivity (up to 42.16% and 27.7%, respectively). Additionally, the internal bond and rupture modulus of the MDF was enhanced by 59.0% and 70.0%, respectively, for GO and 41.4% and 48.5% for rGO. The highest value of the modulus of rupture (MoR) was observed at a concentration of 3.0% of rGO nanoparticles (44.7 MPa). The findings also showed that thickness swelling (Ts) and water absorption (WA) exhibited directly proportional relationships for 3.0% GO and rGO. These results suggested that incorporating GO and rGO nanoparticles into UF resin can significantly improve the physical and mechanical properties of nano MDF.</jats:p>