Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mursaleen, Mohammad

  • Google
  • 2
  • 12
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Behavior of geomaterial composite using sugar cane bagasse ash under compressive and flexural loading17citations
  • 2022Strength and microscale properties of bamboo fiber-reinforced concrete modified with natural rubber latex11citations

Places of action

Chart of shared publication
Khan, Mohammad Arsalan
2 / 4 shared
Anas, S. M.
1 / 14 shared
Hasan, Mohd Abul
1 / 2 shared
Nikhade, Harshal
1 / 1 shared
Ansari, Khalid
1 / 2 shared
Birali, Ram Rathan Lal
1 / 1 shared
Najm, Hadee Mohammed
2 / 4 shared
Islam, Saiful
1 / 10 shared
Inyama, King
1 / 1 shared
Awoyera, Paul Oluwaseun
1 / 2 shared
Hadidi, Haitham M.
1 / 3 shared
Althoey, Fadi
1 / 9 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Khan, Mohammad Arsalan
  • Anas, S. M.
  • Hasan, Mohd Abul
  • Nikhade, Harshal
  • Ansari, Khalid
  • Birali, Ram Rathan Lal
  • Najm, Hadee Mohammed
  • Islam, Saiful
  • Inyama, King
  • Awoyera, Paul Oluwaseun
  • Hadidi, Haitham M.
  • Althoey, Fadi
OrganizationsLocationPeople

article

Strength and microscale properties of bamboo fiber-reinforced concrete modified with natural rubber latex

  • Khan, Mohammad Arsalan
  • Mursaleen, Mohammad
  • Inyama, King
  • Awoyera, Paul Oluwaseun
  • Hadidi, Haitham M.
  • Najm, Hadee Mohammed
  • Althoey, Fadi
Abstract

<jats:p>Development of concrete using alternative materials has become very important in the quest to achieve sustainable development in the built environment. However, it is critical to continually modify concrete mixtures to correct deficiencies of fresh and long-term properties. In this study, natural rubber latex and bamboo fiber were added as constituent materials in concrete, and the effects of the constituents on concrete were explored. Bamboo fiber (BF) and natural rubber latex (NRL) were added in proportions of 0%, 1%, and 1.5%. The study determined the workability (slump) of fresh concrete mixes, strength, and water absorption properties of the hardened samples after curing them in water for 7, 14, and 28 days. The morphology of the concrete samples was explored using SEM-EDX equipment. The results showed that samples having 1% bamboo fiber content and 1% rubber latex had the highest compressive strength among all the presented samples. Furthermore, samples containing equal but lower percentages of both bamboo and NRL had the highest compressive strength comparable to that of the control. This research showed the feasibility of combining bamboo fiber and rubber latex for an alternative eco-friendly construction approach to enhance the performance of conventional concrete in terms of tensile strength and flexural strength properties.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • scanning electron microscopy
  • strength
  • flexural strength
  • Energy-dispersive X-ray spectroscopy
  • tensile strength
  • rubber
  • curing