People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hamilton, Andrew
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Characterizing Biaxiallly Stretched Polypropylene / Graphene Nanoplatelet Compositescitations
- 2021Characterizing Biaxiallly Stretched Polypropylene / Graphene Nanoplatelet Compositescitations
- 2020Composite laminate delamination detection using transient thermal conduction profiles and machine learning based data analysiscitations
- 2020Identifying defects in aerospace composite sandwich panels using high-definition distributed optical fibre sensorscitations
- 2020Defect detection in aerospace sandwich composite panels using conductive thermography and contact sensorscitations
- 2020Non-destructive identification of fibre orientation in multi-ply biaxial laminates using contact temperature sensorscitations
- 2019A novel methodology for macroscale, thermal characterization of carbon fiber-reinforced polymer for integrated aircraft electrical power systemscitations
- 2017CHARACTERIZING BIAXIALLY STRETCHED POLYPROPYLENE/GRAPHENE NANOPLATELET COMPOSITES
- 2016Melt processing and properties of linear low density polyethylene-graphene nanoplatelet compositescitations
- 2016Melt processing and properties of linear low density polyethylene-graphene nanoplatelet compositescitations
- 2015Characterisation of melt processed nanocomposites of Polyamide 6 subjected to uniaxial-drawing
Places of action
Organizations | Location | People |
---|
article
Characterizing Biaxiallly Stretched Polypropylene / Graphene Nanoplatelet Composites
Abstract
In this work, polypropylene (PP) nanocomposites containing different weight concentration of graphene nanoplatelets (GNP) were prepared by melt-mixing using an industrial-scale, co-rotating, intermeshing, twin-screw extruder. The materials were then compression moulded into sheets, and biaxially stretched at different stretching ratios (SRs) below the PP melting temperature. The effects of GNP content and biaxial stretching on the bulk properties of unfilled PP and PP/GNP nanocomposites have been investigated in details. Results show that the addition of GNP (> 5 wt%) can lead to electrically conductive composites due to the formation of percolation network. The GNP have led to increased polymer crystallinity and enhanced materials stiffness and strength. Biaxial stretching process further enhances the materials mechanical properties but has slightly decreased the composites electrical conductivity.The PP/GNP nanocomposites were also processed into 3D demonstrator parts using vacuum forming, and the properties of which were comparable with biaxially stretched composites.