People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bouten, Cvc Carlijn
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023How Smart are Smart Materials?citations
- 2020Optimization of Anti-kinking Designs for Vascular Grafts Based on Supramolecular Materialscitations
- 2020Imaging the In Vivo Degradation of Tissue Engineering Implants by Use of Supramolecular Radiopaque Biomaterialscitations
- 2019Macrophage-driven biomaterial degradation depends on scaffold microarchitecturecitations
- 2018Intrinsic cell stress is independent of organization in engineered cell sheetscitations
- 2017Biomaterial-driven in situ cardiovascular tissue engineering : a multi-disciplinary perspectivecitations
- 2017Porous scaffolds using dual electrospinning for in situ cardiovascular tissue engineeringcitations
- 2017Mechanically robust electrospun hydrogel scaffolds crosslinked via supramolecular interactionscitations
- 2015Hydrolytic and oxidative degradation of electrospun supramolecular biomaterialscitations
- 2015Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials:In vitro degradation pathwayscitations
- 2014Monocytic cells become less compressible but more deformable upon activationcitations
- 2013Mechanical analysis of ovine and pediatric pulmonary artery for heart valve stent designcitations
- 2003Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valvecitations
Places of action
Organizations | Location | People |
---|
article
Optimization of Anti-kinking Designs for Vascular Grafts Based on Supramolecular Materials
Abstract
Synthetic vascular grafts to be applied as access grafts for hemodialysis often require anti-kinking properties. Previously, electrospun microporous vascular implants based on synthetic supramolecular materials have been shown to perform adequately as resorbable grafts due to the microstructures, thereby enabling attraction of endogenous cells and consecutive matrix production in situ. Here, we use supramolecular materials based on hydrogen bonding interactions between bisurea (BU) or 2-ureido-4[1H]-pyrimidinones (UPy) to produce microporous anti-kinking tubular structures by combining solution electrospinning with 3D printing. A custom-made rational axis for 3D printing was developed to produce controlled tubular structures with freedom in design in order to print complex tubular architectures without supporting structures. Two different tubular grafts were developed, both composed of a three-layered design with a 3D printed spiral sandwiched in between luminal and adventitial electrospun layers. One tubular scaffold was composed of BU-polycarbonate electrospun layers with 3D printed polycaprolactone (PCL) strands in between for dimensional stability, and the other graft fully consisted of supramolecular polymers, using chain-extended UPy-PCL as electrospun layers and a bifunctional UPy-PCL for 3D printing. Both grafts, with a 3D printed spiral, demonstrated a reproducible dimensional stability and anti-kinking behavior under bending stresses.