People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sørensen, Søren Strandskov
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Continuous structure modification of metal-organic framework glasses via halide salts
- 2024Thermal conductivity in modified sodium silicate glasses is governed by modal phase changescitations
- 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modelling
- 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modelling
- 2024Alcohols as modifiers in metal−bis(acetamide) hybrid coordination network glasses
- 2024History matters for glass structure and mechanical properties
- 2023Role of Zn in aluminosilicate glasses used as supplementary cementitious materialscitations
- 2023Deciphering the hierarchical structure of phosphate glasses using persistent homology with optimized input radiicitations
- 2022Thermal conduction in a densified oxide glasscitations
- 2022Thermal conduction in a densified oxide glass:Insights from lattice dynamicscitations
- 2021Thermal conductivity of densified borosilicate glassescitations
- 2021Toughening of soda-lime-silica glass by nanoscale phase separation: Molecular dynamics studycitations
- 2020Heat conduction in oxide glasses: Balancing diffusons and propagons by network rigiditycitations
- 2020Heat conduction in oxide glasses: Balancing diffusons and propagons by network rigiditycitations
- 2020Fracture toughness of a metal–organic framework glasscitations
- 2019Boron anomaly in the thermal conductivity of lithium borate glassescitations
- 2019Statistical Mechanical Approach to Predict the Structure Evolution in Borosilicate Glasses
- 2019Predicting Composition-Structure Relations in Alkali Borosilicate Glasses Using Statistical Mechanicscitations
Places of action
Organizations | Location | People |
---|
article
Predicting Composition-Structure Relations in Alkali Borosilicate Glasses Using Statistical Mechanics
Abstract
Predicting the atomic-scale structure of multicomponent glasses from their composition and thermal history would greatly accelerate the discovery of new engineering and functional glasses. A statistical mechanics-based approach has recently been applied to predict the composition-structure evolution in binary oxide glasses by determining the relative entropic and enthalpic contributions to the bonding preferences. In this work, we first establish the network modifier-former interaction parameters in sodium silicate and sodium borate glasses to predict the structural evolution in sodium borosilicate glasses. Due to the significant variations in the experimentally determined structural speciation in borosilicate glasses, we perform classical molecular dynamics (MD) simulations to establish and validate our structural model. We also show that the statistical mechanical model naturally accounts for the difference in structural speciation from MD simulations and NMR experiments, which in turn arises from the difference in cooling rate and thus thermal history of the glasses. Finally, we demonstrate the predictive capability of the model by accurately accounting for the structural evolution in potassium borosilicate glasses without using any adjustable model parameters. This is possible, because all the interaction parameters are already established in the potassium silicate, potassium borate, and sodium borosilicate glasses, respectively.