Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cristofolini, Luca

  • Google
  • 3
  • 12
  • 90

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023In vitro and in silico methods for the biomechanical assessment of osseointegrated transfemoral prostheses: a systematic review4citations
  • 2017Precision of digital volume correlation approaches for strain analysis in bone imaged with micro-computed tomography at different dimensional levels86citations
  • 2012Accuracy of finite element predictions in sideways load configurations for the proximal human femurcitations

Places of action

Chart of shared publication
Galteri, Giulia
1 / 1 shared
Tozzi, Gianluca
1 / 13 shared
Giorgi, Mario
1 / 2 shared
Palanca, Marco
1 / 1 shared
Dallara, Enrico
1 / 2 shared
Peña Fernández, Marta
1 / 9 shared
Zani, Lorenzo
1 / 2 shared
Taddei, Fulvia
1 / 1 shared
Schileo, Enrico
1 / 1 shared
Viceconti, Marco
1 / 3 shared
Grassi, Lorenzo
1 / 5 shared
Juszczyk, Mateusz
1 / 2 shared
Chart of publication period
2023
2017
2012

Co-Authors (by relevance)

  • Galteri, Giulia
  • Tozzi, Gianluca
  • Giorgi, Mario
  • Palanca, Marco
  • Dallara, Enrico
  • Peña Fernández, Marta
  • Zani, Lorenzo
  • Taddei, Fulvia
  • Schileo, Enrico
  • Viceconti, Marco
  • Grassi, Lorenzo
  • Juszczyk, Mateusz
OrganizationsLocationPeople

article

Precision of digital volume correlation approaches for strain analysis in bone imaged with micro-computed tomography at different dimensional levels

  • Cristofolini, Luca
  • Tozzi, Gianluca
  • Giorgi, Mario
  • Palanca, Marco
  • Dallara, Enrico
  • Peña Fernández, Marta
Abstract

<p>Accurate measurement of local strain in heterogeneous and anisotropic bone tissue is fundamental to understand the pathophysiology of musculoskeletal diseases, to evaluate the effect of interventions from preclinical studies, and to optimize the design and delivery of biomaterials. Digital volume correlation (DVC) can be used to measure the three-dimensional displacement and strain fields from micro-computed tomography (μCT) images of loaded specimens. However, this approach is affected by the quality of the input images, by the morphology and density of the tissue under investigation, by the correlation scheme, and by the operational parameters used in the computation. Therefore, for each application, the precision of the method should be evaluated. In this paper, we present the results collected from datasets analyzed in previous studies as well as new data from a recent experimental campaign for characterizing the relationship between the precision of two different DVC approaches and the spatial resolution of the outputs. Different bone structures scanned with laboratory source μCT or synchrotron light μCT (SRμCT) were processed in zero-strain tests to evaluate the precision of the DVC methods as a function of the subvolume size that ranged from 8 to 2,500 µm. The results confirmed that for every microstructure the precision of DVC improves for larger subvolume size, following power laws. However, for the first time, large differences in the precision of both local and global DVC approaches have been highlighted when SRμCT or in vivo μCT images were used instead of conventional ex vivo μCT. These findings suggest that in situ mechanical testing protocols applied in SRμCT facilities should be optimized to allow DVC analyses of localized strain measurements. Moreover, for in vivo μCT applications, DVC analyses should be performed only with relatively course spatial resolution for achieving a reasonable precision of the method. In conclusion, we have extensively shown that the precision of both tested DVC approaches is affected by different bone structures, different input image resolution, and different subvolume sizes. Before each specific application, DVC users should always apply a similar approach to find the best compromise between precision and spatial resolution of the measurements.</p>

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • tomography
  • anisotropic
  • biomaterials