Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Corre, Vincent M. Le

  • Google
  • 4
  • 35
  • 118

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024In Situ Probing the Crystallization Kinetics in Gas‐Quenching‐Assisted Coating of Perovskite Films15citations
  • 2024On the importance of varying device thickness and temperature on the outcome of space-charge-limited current measurements3citations
  • 2021Pathways toward 30% Efficient Single‐Junction Perovskite Solar Cells and the Role of Mobile Ions71citations
  • 2018Bilayer–ternary polymer solar cells fabricated using spontaneous spreading on water29citations

Places of action

Chart of shared publication
Lüer, Larry
1 / 7 shared
Brabec, Christoph J.
1 / 36 shared
Ronsin, Olivier J. J.
1 / 3 shared
Qiu, Shudi
1 / 1 shared
Zhang, Kaicheng
1 / 6 shared
Dong, Lirong
1 / 1 shared
Majewski, Martin
1 / 1 shared
Jang, Dongju
1 / 1 shared
Cerrillo, José Garcia
1 / 1 shared
Du, Tian
1 / 2 shared
Guo, Fei
1 / 3 shared
Harting, Jens
1 / 5 shared
Yang, Fu
1 / 2 shared
Egelhaaf, Hansjoachim
1 / 1 shared
Zhao, Alfred
1 / 1 shared
Röhr, Jason A.
1 / 2 shared
Diekmann, Jonas
1 / 6 shared
Neher, Dieter
1 / 64 shared
Deibel, Carsten
1 / 4 shared
Kirchartz, Thomas
1 / 20 shared
Ehrler, Bruno
1 / 22 shared
Peña-Camargo, Francisco
1 / 9 shared
Gutierrez-Partida, Emilio
1 / 12 shared
Futscher, Moritz H.
1 / 15 shared
Jaiser, Frank
1 / 7 shared
Toro, Lorena Perdigón
1 / 1 shared
Reichert, Sebastian
1 / 2 shared
Unold, Thomas
1 / 42 shared
Caprioglio, Pietro
1 / 17 shared
Arvind, Malavika
1 / 4 shared
Wienk, Martijn M.
1 / 41 shared
Heuvel, Ruurd
1 / 4 shared
Janssen, René A. J.
1 / 151 shared
Colberts, Fallon J. M.
1 / 4 shared
Koster, L. Jan Anton
1 / 23 shared
Chart of publication period
2024
2021
2018

Co-Authors (by relevance)

  • Lüer, Larry
  • Brabec, Christoph J.
  • Ronsin, Olivier J. J.
  • Qiu, Shudi
  • Zhang, Kaicheng
  • Dong, Lirong
  • Majewski, Martin
  • Jang, Dongju
  • Cerrillo, José Garcia
  • Du, Tian
  • Guo, Fei
  • Harting, Jens
  • Yang, Fu
  • Egelhaaf, Hansjoachim
  • Zhao, Alfred
  • Röhr, Jason A.
  • Diekmann, Jonas
  • Neher, Dieter
  • Deibel, Carsten
  • Kirchartz, Thomas
  • Ehrler, Bruno
  • Peña-Camargo, Francisco
  • Gutierrez-Partida, Emilio
  • Futscher, Moritz H.
  • Jaiser, Frank
  • Toro, Lorena Perdigón
  • Reichert, Sebastian
  • Unold, Thomas
  • Caprioglio, Pietro
  • Arvind, Malavika
  • Wienk, Martijn M.
  • Heuvel, Ruurd
  • Janssen, René A. J.
  • Colberts, Fallon J. M.
  • Koster, L. Jan Anton
OrganizationsLocationPeople

article

On the importance of varying device thickness and temperature on the outcome of space-charge-limited current measurements

  • Corre, Vincent M. Le
  • Zhao, Alfred
  • Röhr, Jason A.
Abstract

<jats:p>Space-charge-limited current (SCLC) measurements are commonly employed to characterize charge-transport properties of semiconductors used in next-generation thin-film optoelectronics, such as organic <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m1"><mml:mrow><mml:mi>π</mml:mi></mml:mrow></mml:math></jats:inline-formula>-conjugated small molecules and polymers, and metal-halide perovskites. Despite the wide-spread adoption of the method, there is no community-wide consensus around how SCLC measurements should be performed, nor how the data should be analyzed and reported. While it is common to report device characteristics by employing a simplistic analytical model for fitting a single <jats:italic>J</jats:italic>-<jats:italic>V</jats:italic> curve obtained from a solitary device at room temperature—sometimes in a very select voltage range—expectedly, such an approach will often not give an accurate picture of the underlying physics. On that account, we here aim to highlight the importance of reporting values extracted from not just a solitary single-carrier device measured at room temperature, but from devices with different thicknesses measured at varying device temperature. We also highlight how the choice of device thickness is especially critical in determining what device and material characteristics can be extracted from SCLC measurements, and how this choice can greatly affect the conclusions drawn about the probed semiconducting material. While other factors could affect the outcome of an SCLC measurement and the subsequent analysis, we hope that the topics covered in this article will result in overall improved charge-transport characterization of thin-film semiconductors and initiate a broader discussion into SCLC metrology at large.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • polymer
  • semiconductor