Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Longhe, Liu

  • Google
  • 1
  • 8
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Hybrid PSO with tree-based models for predicting uniaxial compressive strength and elastic modulus of rock samples7citations

Places of action

Chart of shared publication
Aizitiliwumaier, Tuerhong
1 / 1 shared
Jun, Li
1 / 1 shared
Xiaowei, Qin
1 / 1 shared
Shahani, Niaz Muhammad
1 / 2 shared
Wei, Xin
1 / 2 shared
Weikang, Cao
1 / 1 shared
Shigui, Qiu
1 / 1 shared
Xiaohu, Ma
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Aizitiliwumaier, Tuerhong
  • Jun, Li
  • Xiaowei, Qin
  • Shahani, Niaz Muhammad
  • Wei, Xin
  • Weikang, Cao
  • Shigui, Qiu
  • Xiaohu, Ma
OrganizationsLocationPeople

article

Hybrid PSO with tree-based models for predicting uniaxial compressive strength and elastic modulus of rock samples

  • Aizitiliwumaier, Tuerhong
  • Jun, Li
  • Xiaowei, Qin
  • Shahani, Niaz Muhammad
  • Wei, Xin
  • Longhe, Liu
  • Weikang, Cao
  • Shigui, Qiu
  • Xiaohu, Ma
Abstract

<jats:p>The mechanical characteristics of rocks, specifically uniaxial compressive strength (UCS) and elastic modulus (E), serve as crucial factors in ensuring the integrity and stability of relevant projects in mining and civil engineering. This study proposes a novel hybrid PSO (particle swarm optimization) with tree-based models, such as gradient boosting regressor (GBR), light gradient boosting machine (LightGBM), random forest (RF), and extreme gradient boosting (XGBoost) for predicting UCS and E of rock samples from Block IX of the Thar Coalfield in Pakistan. A total of 122 datasets were divided into training and testing sets, with an 80:20 ratio, respectively, to develop the predictive models. Key performance metrics, including the coefficient of determination (<jats:italic>R</jats:italic><jats:sup>2</jats:sup>), mean absolute error (MAE), and root mean square error (RMSE), were employed to assess the model’s predictive performance. The results indicate that the PSO-XGBoost model demonstrated the highest accuracy in predicting UCS and E, outperforming the other models, which exhibited inferior predictive performance. Furthermore, this study utilized the SHAP (Shapley Additive exPlanations) machine learning method to enhance our understanding of how each input feature variable influences the output values of UCS and E. In conclusion, the proposed framework offers significant advantages in evaluating the strength and deformation of rocks at Thar Coalfield, with promising applications in the field of mining and rock engineering.</jats:p>

Topics
  • strength
  • random
  • machine learning
  • microwave-assisted extraction