Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thakur, Aneesh

  • Google
  • 4
  • 12
  • 68

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Leucine improves the aerosol performance of dry powder inhaler formulations of siRNA-loaded nanoparticles44citations
  • 2022Inhalable Composite Microparticles Containing siRNA-Loaded Lipid-Polymer Hybrid Nanoparticles: Saccharides and Leucine Preserve Aerosol Performance and Long-Term Physical Stability5citations
  • 2021Engineering of Solid Dosage Forms of siRNA-Loaded Lipidoid-Polymer Hybrid Nanoparticles Using a Quality-by-Design Approach2citations
  • 2020Optimizing the Intracellular Delivery of Therapeutic Anti-inflammatory TNF-α siRNA to Activated Macrophages Using Lipidoid-Polymer Hybrid Nanoparticles17citations

Places of action

Chart of shared publication
Harinck, Laure
1 / 1 shared
Selg, Ewa
1 / 1 shared
Franzyk, Henrik
3 / 3 shared
Gerde, Per
1 / 1 shared
Foged, Camilla
4 / 8 shared
Sjöberg, Carl-Olof
1 / 1 shared
Xu, You
2 / 2 shared
Lokras, Abhijeet
3 / 3 shared
Shi, Zhenning
1 / 1 shared
Turan, Enise Tugba
1 / 1 shared
Wadhwa, Abishek
1 / 1 shared
Thanki, Kaushik
1 / 3 shared
Chart of publication period
2022
2021
2020

Co-Authors (by relevance)

  • Harinck, Laure
  • Selg, Ewa
  • Franzyk, Henrik
  • Gerde, Per
  • Foged, Camilla
  • Sjöberg, Carl-Olof
  • Xu, You
  • Lokras, Abhijeet
  • Shi, Zhenning
  • Turan, Enise Tugba
  • Wadhwa, Abishek
  • Thanki, Kaushik
OrganizationsLocationPeople

article

Inhalable Composite Microparticles Containing siRNA-Loaded Lipid-Polymer Hybrid Nanoparticles: Saccharides and Leucine Preserve Aerosol Performance and Long-Term Physical Stability

  • Shi, Zhenning
  • Turan, Enise Tugba
  • Franzyk, Henrik
  • Foged, Camilla
  • Thakur, Aneesh
  • Xu, You
Abstract

Thermostable dry powder formulations with high aerosol performance are attractive inhalable solid dosage forms for local treatment of lung diseases. However, preserved long-term physical stability of dry powder inhaler (DPI) formulations is critical to ensure efficient and reproducible delivery to the airways during the shelf life of the drug product. Here, we show that ternary excipient mixtures of the disaccharide trehalose (Tre), the polysaccharide dextran (Dex), and the shell-forming dispersion enhancer leucine (Leu) stabilize siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) during spray drying into nanocomposite microparticles, and result in inhalable solid dosage forms with high aerosol performance and long-term stability. The stabilizing roles of Tre and Dex were also studied separately by investigating DPI formulations containing binary mixtures of Leu/Tre and Leu/Dex, respectively. DPI formulations containing binary Leu/Dex mixtures were amorphous and displayed preserved long-term physical stability of LPNs and chemical stability of siRNA in accelerated stability studies under exaggerated storage conditions (ambient temperature and relative humidity). In contrast, powders containing binary Leu/Tre mixtures were amorphous, and hence metastable, and were recrystallized after six months of storage. Ternary mixtures of Tre, Leu, and Dex provided the most efficient protection of the LPNs during the spray drying process and prevented recrystallization of amorphous Tre. Hence, in ternary mixtures, Leu, Tre, and Dex have the following functions: the shell-forming Leu functions as a dispersion enhancer and is essential for high aerosol performance, the disaccharide Tre provides LPN protection during manufacturing and storage due to efficient coverage of the LPN surface, and the polysaccharide Dex promotes the formation of porous particles and prevents recrystallization of Tre during long-term storage. Therefore, the use of ternary excipient mixtures composed of Leu, Tre, and Dex, may prevent instability problems of DPI formulations and preserve the aerosol performance during long-term storage, which is essential for effective pulmonary drug delivery.

Topics
  • nanoparticle
  • porous
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • surface
  • polymer
  • amorphous
  • chemical stability
  • forming
  • recrystallization
  • drying